COMPOSITION SERIES AND INTERTWINING OPERATORS FOR THE SPHERICAL PRINCIPAL SERIES

BY KENNETH JOHNSON AND NOLAN R. WALLACH ${ }^{1}$
Communicated by I. M. Singer, April 13, 1972

1. Introduction. The purpose of this note is to announce several results (to appear in [4] and [5]) on the spherical principal series for a semisimple Lie group G. Our main result gives a complete determination of the composition series for the case when G has split rank 1 . We also give explicit formulas for the intertwining operators for the spherical principal series (for arbitrary rank) and thereby have explicit formulas for parts of the corresponding generalized c-functions. Using the intertwining operators we determine which parts of the composition series of a spherical principal series representation are unitarizable in the case when G has split rank 1 .

Except for $\S 5$, we exclude the case where $G=S L(2, R)$ from the statement of our theorems. For the analogous discussions for $G=S L(2, R)$ see Gelfand, Graev, Vilenkin [1] or Sally [9].
2. Notation and spherical harmonics. Let G be a real, connected, semisimple, Lie group with finite center. Let $G=K A N$ be an Iwasawa decomposition of G and let M and M^{\prime} denote respectively the centralizer and normalizer of A in K. Then $W=M^{\prime} / M$ is the Weyl group of G / K. Let $\mathfrak{g}, \mathfrak{f}, \mathfrak{a}, \mathfrak{m}$, and \mathfrak{n} be respectively the Lie algebras of G, K, A, M and N. If $g \in G$ then $g=k(g) \exp (H(g)) n(g)$ where $k(g) \in K, H(g) \in \mathfrak{a}$ and $n(g) \in N$ and $k(g), H(g)$ and $n(g)$ are unique.

Let \mathfrak{a}^{*} be the dual of \mathfrak{a} and $\mathfrak{a}_{\boldsymbol{c}}^{*}$ its complexification. If $\gamma \in \mathfrak{a}^{*}-\{0\}$ then γ is called a restricted root if $g_{\gamma}=\{X \in \mathfrak{g} \mid[H X]=\gamma(H) X$ for all $H \in \mathfrak{a}\}$ is not $\{0\}$. Let $m_{\gamma}=\operatorname{dim} \mathfrak{g}_{\gamma}$ and let Δ denote the set of restricted roots. Then $\mathfrak{g}=\sum_{\gamma \in \Delta} \mathfrak{g}_{\gamma}+\mathfrak{m}+\mathfrak{a}$. We have an ordering on Δ such that if Δ^{+}is the set of positive roots then $\mathfrak{n}=\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}$. Let \bar{N} be the Lie group corresponding to $\bar{n}=\sum_{\alpha \in \Delta^{+}} g_{-\alpha}$. Let $2 \rho=\sum_{\alpha \in \Delta} \mathfrak{g} m_{\alpha} \alpha$.

If $\lambda \in \mathfrak{a}_{C}^{*}$ we can define a character on $M A N$ by sending $x=m a n \rightarrow x^{\lambda}$ $=e^{\lambda(\log a)}$. On $B=G / M A N=K / M$, we fix the unique K-invariant measure $d b$ such that $\int_{B} d b=1$.

Let H^{λ} be the set of all measurable functions $f: G \rightarrow C$ such that
(1) $f(g x)=x^{-\lambda} f(g)$ if $x \in M A N$; and,
(2) $\int_{B}|f(b)|^{2} d b<\infty$.

[^0]
[^0]: AMS 1970 subject classifications. Primary 22E45, 22D30; Secondary 22E43.
 ${ }^{1}$ Alfred P. Sloan Fellow at Rutgers University.

