SURFACES WITH PARALLEL MEAN CURVATURE VECTOR

BY BANG-YEN CHEN

Communicated by Philip Hartman, March 20, 1972

Let M be a surface immersed in a Riemannian manifold R^m of dimension m. Let D denote the covariant differentiation of R^m and n be a normal vector field on M. If we denote by D^*n the normal component of Dn, then D^* defines a connection in the normal bundle. A normal vector field n is called parallel if $D^*n = 0$.

Let H and h denote the mean curvature vector and the second fundamental form of M in E^m . It is easy to see that minimal surfaces of a euclidean *m*-space E^m and minimal surfaces of hyperspheres of E^m are surfaces of E^m with parallel mean curvature vector, i.e. $D^* H = 0$. On the other hand, for any analytic function $\varphi \neq 0$ of z = u + iv, defined in a neighborhood of the origin in the (u, v)-plane, and constants α, β with $\alpha > 0$, Hoffman [3], [4] proved that, up to euclidean motions and isothermal coordinate E(u, v), locally there exists one and only one surface in E^4 , denoted by $M(\varphi, \alpha, \beta)$, with parallel mean curvature vector H such that $\alpha = |H|$, and $\varphi = \varphi_3$, $\beta \varphi = \varphi_4$ where φ_3 and φ_4 are given in the Lemma of [3]. These surfaces are easy to check that they are contained in either an affine 3-space or an ordinary 3-sphere of E^m and they are neither minimal surfaces in E^m nor minimal surfaces of hyperspheres of E^m . Hence, the following problems seem to be interesting.

Problem I. Let M be a surface immersed in a euclidean m-space E^m with parallel mean curvature vector. If M is neither a minimal surface of E^m nor a minimal surface of a hypersphere of E^m , is M contained either in an affine 3-space of E^m or in an ordinary 3-sphere of E^m ?

Problem II. If the answer to Problem I is in the affirmative, is M given locally by one of the surfaces $M(\varphi, \alpha, \beta)$?

The main purpose of this paper is to announce the following results. The details will appear elsewhere.

THEOREM I. The answer to Problem I is in the affirmative.

THEOREM II. The answer to Problem II is in the affirmative.

From theorem I we have the following corollaries.

COROLLARY 1. Let M be a surface immersed in an m-sphere S^m with

AMS 1970 subject classifications. Primary 53A05, 53A10.

Key words and phrases. Parallel mean curvature vector, minimal surfaces, normal curvature, $M(\varphi, \alpha, \beta)$.