A STRUCTURE THEOREM FOR COMPLETE NONCOMPACT HYPERSURFACES OF NONNEGATIVE CURVATURE

BY H. WU1

Communicated by I. Singer, May 20, 1971

The convexity theorem of Sacksteder-van Heijenoort [4] states that if M is a C^{∞} n-dimensional (n>1) complete orientable Riemannian manifold of nonnegative sectional curvature with positive curvature at one point, then every isometric immersion $x: M \rightarrow R^{n+1}$ is an imbedding and x(M) bounds an open convex subset of R^{n+1} ; furthermore M is diffeomorphic to either R^n or S^n (unit n-sphere). The purpose of this note is to announce a structure theorem that complements the above result of Sacksteder and van Heijenoort. Full details will appear in a forthcoming monograph on convexity and rigidity of hypersurfaces.

THEOREM. Let M be a C^{∞} hypersurface in \mathbb{R}^{n+1} (n>1) which is complete, noncompact, orientable with nonnegative sectional curvature, which is in addition all positive at one point, then:

- (1) The spherical image of M in the unit sphere S^n has a geodesically convex closure, which lies in a closed hemisphere.
- (2) The total curvature of M (cf. Chern-Lashof [2]) does not exceed one.
- (3) M is a pseudograph (see below for definition) over one of its tangent planes.
 - (4) M has infinite volume.

COROLLARY. Suppose the sectional curvature of M is in fact everywhere positive, then:

- (5) The spherical map is a diffeomorphism onto a geodesically convex open subset of S^n . Consequently the spherical image lies in an open hemisphere.
- (6) Coordinates in \mathbb{R}^{n+1} can be so chosen that M is tangent to the hyperplane $x_{n+1}=0$ at the origin, and there is a nonnegative strictly convex function (i.e. its Hessian is everywhere positive definite) $f(x_1, \dots, x_n)$ defined in a convex domain of $\{x_{n+1}=0\}$ such that M is exactly the graph of f.

REMARKS. (A) A C^{∞} convex hypersurface M (i.e. M is the full boundary of an open convex set) in \mathbb{R}^{n+1} is said to form a pseudograph

AMS 1969 subject classifications. Primary 5374; Secondary 5375.

¹ Sloan Fellow. Also partially supported by the National Science Foundation.