WEIGHTED APPROXIMATION OF CONTINUOUS FUNCTIONS¹

BY JOÃO B. PROLLA

Communicated by Felix Browder, June 17, 1971

1. Notation. Let X be a completely regular Hausdorff space and E a (real or complex) locally convex Hausdorff space. F(X, E) is the vector space of all mappings from X into E, and C(X, E) is the vector subspace of all such mappings that are continuous. $B_{\infty}(X, E)$ is the vector subspace of F(X, E) consisting of those bounded f that vanish at infinity. The vector subspace $C(X, E) \cap B_{\infty}(X, E)$ is denoted by $C_{\infty}(X, E)$. If X is locally compact, $\mathfrak{K}(X, E)$ will denote the subspace of C(X, E) consisting of those functions that have compact support. The corresponding spaces for $E = \mathbf{R}$ or \mathbf{C} are written omitting E. A weight v on X is a nonnegative upper semicontinuous function on X. A directed family of weights on X is a set of weights on X such that given $u, v \in V$ and $\lambda \ge 0$ there is a $w \in W$ such that $\lambda u, \lambda v \le w$. If U and V are two directed families of weights on X and for every $u \in U$ there is a $v \in V$ such that $u \leq v$, we write $U \leq V$. If V is a directed family of weights on X, the vector space of all $f \in F(X, E)$ such that $vf \in B_{\infty}(X, E)$, for any $v \in V$, is denoted by $FV_{\infty}(X, E)$ and is called a weighted function space. On $FV_{\infty}(X, E)$ we shall consider the topology determined by all the seminorms $f \mapsto \sup \{v(x) \not = (f(x)); x \in X\}$ where $v \in V$ and p is a continuous seminorm on E. $CV_{\infty}(X, E)$ will denote the subspace $FV_{\infty}(X, E) \cap C(X, E)$, equipped with the induced topology. The weighted function spaces $CV_{\infty}(X, E)$ will be called Nachbin spaces.

2. Completeness properties of Nachbin spaces [6]. If for every $x \in X$ there is a weight $u \in U$ such that u(x) > 0, we write U > 0.

LEMMA. If E is complete and U>0, then $FU_{\infty}(X, E)$ is complete.

THEOREM 1. Suppose that E is complete, and U and V are two directed families of weights on X with $U \leq V$. If V > 0 on X and $CU_{\infty}(X, E)$ is closed in $FU_{\infty}(X, E)$, the Nachbin space $CV_{\infty}(X, E)$ is complete.

AMS 1970 subject classifications. Primary 46E10, 46E40; Secondary 46G10.

Key words and phrases. Continuous vector-valued functions, weights, Nachbin spaces, completeness, vector-valued bounded Radon measures, Bishop's generalized Stone-Weierstrass theorem, tensor product of topological modules.

¹ This research was supported in part by NSF Grant GP-22713.

Copyright @ American Mathematical Society 1971