BESSEL POTENTIALS. INCLUSION RELATIONS AMONG CLASSES OF EXCEPTIONAL SETS

BY DAVID R. ADAMS AND NORMAN G. MEYERS

Communicated by James Serrin, June 17, 1971

1. Let $g_{\alpha} = g_{\alpha}(x)$ be the Bessel kernel of order α , $0 < \alpha < +\infty$, on R^n ; g_{α} is the Fourier transform of $(2\pi)^{-n/2}(1+|\zeta|^2)^{-\alpha/2}$. For $1 , we define a capacity <math>B_{\alpha,p}$ (referred to as Bessel capacity): for $A \subset R^n$,

$$B(A) = B_{\alpha,p}(A) = \inf_{f} \int f(x)^{p} dx$$

the infimum being taken over all functions f in $L_p^+ = L_p^+(R^n)$ —positive functions in the Lebesgue class—such that $g_\alpha * f(x) \ge 1$ for all $x \in A$. The capacities $B_{\alpha,p}$ have been studied extensively in [4]. It is an easy consequence of the definition of $B_{\alpha,p}$ that: $B_{\alpha,p}(A) = 0$ if and only if there is an $f \in L_p^+$ such that $g_\alpha * f(x) = +\infty$ on A.

Variants of the Bessel capacities occur for instance in [1], [3], [5].

Our purpose here is to announce results on the relations between the B's for various pairs (α, p) . We say that the Bessel capacity B is stronger than the Bessel capacity B' (written $B' \leq B$) if B(A) = 0 always implies B'(A) = 0. If in addition, there is a set A such that B(A) > 0 but B'(A) = 0 we say B is strictly stronger than $B'(B' \leq B)$. These are the relations between B and B'. If both $B' \leq B$ and $B \leq B'$ hold, we say B is equivalent to B' $(B \sim B')$. In addition to the relations among the B's, we also give some results concerning relations between Bessel capacities, Hausdorff measures, and classical capacities (C_k) below. These classical capacities can be viewed as a special case of general L_p -capacities of [4] when p = 1 or p = 2.

Notation. wei $B = \text{weight of } B_{\alpha,p} = \alpha p$; ord $B = \text{order of } B_{\alpha,p} = \alpha$; ind $B = \text{index of } B_{\alpha,p} = (\alpha, p)$. By $(\alpha, p) \prec (\beta, q)$ we shall mean either $\alpha p < \beta q$, or $\alpha p = \beta q$ and $\alpha < \beta$.

2. The principal result is

THEOREM 1. If B and B' are two Bessel capacities,

- (i) $B' \prec B$ if and only if ind $B' \prec \text{ind } B$ and wei $B' \leq n$.
- (ii) $B' \sim B$ if and only if ind B' = ind B or wei B and wei B' > n.