ORIENTATION-PRESERVING MAPPINGS, A SEMIGROUP OF GEOMETRIC TRANSFORMATIONS AND A CLASS OF INTEGRAL OPERATORS ${ }^{1}$

BY ANTONIO O. FARIAS
Communicated by H. S. M. Coxeter, September 29, 1970

Let A, B be smooth $\left(=C^{\infty}\right)$, oriented n-manifolds, A with naturally oriented boundary, ∂A, and B without boundary.

A very important problem in geometric analysis is that of giving an algebraic and/or combinatorial characterization of those smooth mappings from ∂A to B which can be extended to a smooth, orienta-tion-preserving mapping from A to B.

In this work, one such characterization is given in the particular case where A is the unit disk, $D\left(\partial D=S^{1}\right)$, and B is the plane, R^{2}. An application is made to a class of convolution-type operators to show they are topologically equivalent to the Hilbert transform.

1. Preliminaries. A smooth $f: S^{1} \rightarrow R^{2}$ is called extendable if there is a smooth $F: D^{-} \rightarrow R^{2}\left(D^{-}\right.$closure of $\left.D\right)$ with nonnegative Jacobian, J_{F}, and whose restriction to S^{1} is f. If, further, $J_{F}>0$ on S^{1} then f is properly extendable.

A Titus transformation T is a linear operator on the vector space of smooth functions from S^{1} to R^{2} given by:

$$
\begin{equation*}
(T f)(t)=f(t)+c(t) \operatorname{det}\left[v, f^{\prime}(t)\right] v, \tag{1.1}
\end{equation*}
$$

c a nonnegative, smooth function on S^{1}. The set of all finite compositions of Titus transformations is a semigroup, \mathfrak{J}. The effect of a Titus transformation can be represented by an elementary operation of growth along a fixed direction, growth understood in the sense of moving to the outside of an oriented curve.

A "degenerate" mapping $f: S^{1} \rightarrow R^{2}$ is one whose image lies in a onedimensional subspace. A Titus mapping (T-mapping) is the image by an element of \mathfrak{J} of a degenerate mapping. A Titus mapping, thus, has

[^0]
[^0]: AMS 1970 subject classifications. Primary 57D40, 47D05, 44A35; Secondary 30A90, 47E05, 44A15.

 Key words and phrases. Normal immersions, extendable mappings, holomorphic mappings, Hilbert transform.
 ${ }^{1}$ This research is contained in the author's doctoral dissertation submitted to the University of Michigan, and was supported by a Scholarship from Conselho Nacional de Pesquisas (Brazil). The author wishes to thank his advisor, Professor Charles Titus, for suggesting the problem and for his assistance throughout the work.

