BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 3, May 1971

A RENEWAL THEOREM FOR DISTRIBUTIONS ON R^1 WITHOUT EXPECTATION¹

BY K. BRUCE ERICKSON

Communicated by M. Gerstenhaber, December 11, 1970

ABSTRACT. Let $U\{I\}$ be the expected number of visits to an interval I of a random walk associated with a distribution on \mathbb{R}^1 in the domain of attraction of a stable law with exponent $\frac{1}{2} < \alpha \leq 1$. Theorem A gives asymptotic expressions for $U\{I\pm t\}$ as $t\to\infty$. Such expressions are not valid when $0 < \alpha \leq \frac{1}{2}$ without additional hypotheses on F. These are indicated in Theorem B.

1. Theorem 1 of [3] extends to distributions on all of R^1 as follows: (Notation as in [3] or [4, Chapter XI].) Let F be a probability distribution on $(-\infty, \infty)$ and for any measurable set I put

$$U\{I\} = \sum_{n=0}^{\infty} F^{n*}\{I\}$$

finite or not. As in [3] we assume F is nonarithmetic. (See note (iv) in §2 below.)

THEOREM A. Suppose

(1)
$$1 - F(t) + F(-t) = t^{-\alpha}L(t), \quad t > 0,$$

and

(2)
$$\lim_{t \to \infty} \frac{F(-t)}{1 - F(t)} = \frac{q}{p}$$

where $0 < \alpha \leq 1$, p+q=1 and L is slowly varying at ∞ . Then when $\frac{1}{2} < \alpha < 1$,

(3)
$$\lim_{t \to \infty} t^{1-\alpha} L(t) (U\{I+t\} + U\{I-t\}) = \frac{\sin \pi \alpha}{\pi (p^2 + 2pq \cos \pi \alpha + q^2)} |I|$$

and

(4)
$$\lim_{t \to \infty} \frac{U\{I-t\}}{U\{I+t\}} = \frac{q}{p}$$

Copyright © 1971, American Mathematical Society

AMS 1969 subject classifications. Primary 6070, 6066, 6020.

Key words and phrases. Strong renewal theorem on R^1 , infinite mean, domain of attraction, stable law, slow and regular variation, renewal measure, nonarithmetic.

¹ Research was supported in part by a grant from the NIH at the University of Wisconsin.