BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 3, May 1971

L^p BOUNDEDNESS OF CERTAIN CONVOLUTION OPERATORS

BY E. M. STEIN

Communicated by M. H. Protter, December 14, 1970

We announce here several results dealing with the boundedness of convolution operators on $L^{p}(\mathbb{R}^{n})$. These results make use of the idea that boundedness on H^{1} often holds when weak type (1, 1) estimates apply (see [5, Chapter VII]), and the recent discovery of Fefferman [3] characterizing the dual of H^{1} .

Our first result states in effect that the complex intermediate spaces between $H^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$ are the $L^p(\mathbb{R}^n)$. We state this precisely in a particular but useful case. Let $z \to T_z$ be a mapping from the closed strip, $0 \leq R(z) \leq 1$, to bounded operators on $L^2(\mathbb{R}^n)$, which is assumed analytic in the interior and strongly continuous and uniformly bounded in the closed strip.

THEOREM 1. Suppose

(1)
$$\sup_{-\infty < y < \infty} ||T_{iy}(f)||_{H^1} \leq M_0 ||f||_{H^1}, \qquad f \in H^1 \cap L^2,$$

(2)
$$\sup_{-\infty < y < \infty} \|T_{1+iy}(f)\|_{L^2} \leq M_1 \|f\|_{L^2}, \quad f \in L^2$$

Then $||T_t(f)||_p \leq M_t ||f||_p$, $f \in L^p \cap L^2$, if 0 < t < 1, 1/p = 1 - t/2.

This theorem allows one to obtain certain sharp estimates which did not fall under the scope of previous methods. We give two examples.

First, let K(x) be a distribution of compact support, locally integrable away from the origin, and whose Fourier transform $\hat{K}(x)$ is a function. Assume (following Fefferman [2]) that for some θ , $0 \le \theta < 1$,

(i)
$$|\hat{K}(x)| \leq A(1+|x|)^{-n\theta/2},$$

(ii)
$$\int_{|x| \ge 2|y|^{1-\theta}} |K(x-y) - K(x)| dx \le A, |y| \le 1.$$

THEOREM 2. $|x|^{\gamma} \hat{K}(x)$ is a bounded multiplier for $(L^{p}(\mathbb{R}^{n}), L^{p}(\mathbb{R}^{n}))$ if $|(1/p) - \frac{1}{2}| = \frac{1}{2} - \gamma/n\theta, \gamma > 0.$

An instance of the above arises with $|x|^{\gamma} \hat{K}(x) = \theta(x) |x|^{-\beta} \exp i |x|^{\alpha}$,

AMS 1969 subject classifications. Primary 3067, 4258, 4425, 3538.

Key words and phrases. H^p spaces, L^p spaces, interpolation theorems, convolution operators.