DIRICHLET FINITE SOLUTIONS OF $\Delta u = Pu$, AND CLASSIFICATION OF RIEMANN SURFACES¹

BY MITSURU NAKAI²

Communicated by W. Fuchs, October 26, 1970

1. Problem and its background. Consider a C^1 differential P(z) dx dy (z=x+iy) on an open Riemann surface R with $P(z) \ge 0$. We denote by PX(R) the set of C^2 solutions on R of the elliptic equation $\Delta u = Pu$, or more precisely, of $d^*du(z) = u(z)P(z) dx dy$, with a certain property X. For $P \equiv 0$ we use the traditional notation HX instead of OX. Let O_{PX} be the set of pairs (R, P) such that PX(R) reduces to constants. Instead of $(R, P) \in O_{PX}$ we simply write $R \in O_{PX}$ if P is well understood. As for X we let B stand for boundedness, D for the finiteness of the Dirichlet integral $D_R(u) = \int_R du \wedge *du$, and E for the finiteness of the energy integral $E_R(u) = D_R(u) + \int_R Pu^2 dx dy$; we also consider combinations of these properties. It is known that

(1)
$$O_G \subseteq O_{PB} \subseteq O_{PD} \subset O_{PBD} \subset O_{PE} = O_{PBE}.$$

Here O_{G} is the class of pairs (R, P) such that there exists no harmonic Green's function on R.

This type of classification problem was initiated by Ozawa [4] in 1952. It first came as a surprise when Myrberg [2] proved in 1954 the unrestricted existence of the Green's function for the equation $\Delta u = Pu$ ($P \neq 0$) for every R. This also eliminated the need of considering the nonexistence of nonnegative solutions in the case $P \neq 0$. Following Myrberg's discovery, work in this direction largely pursued aspects which were different in nature from those in the harmonic case. Typically classes PD and O_{PD} were first considered by Royden [6] in 1959. Since the energy integral E(u) for $\Delta u = Pu$ plays the same role as the Dirichlet integral D(u) for the harmonic case, it is natural that PE and O_{PE} share properties of HD and O_{HD} . In this

Copyright @ 1971, American Mathematical Society

A MS 1970 subject classifications. 30A48, 31B05, 35J05, 53C20.

Key words and phrases. Riemann surface, Riemannian manifold, harmonic function, solution of $\Delta u = Pu$, Dirichlet integral, energy integral, Royden compactification, *P*-nondensity point, *P*-energy nondensity point, classification theory of Riemann surfaces, Fredholm equation.

¹ Supported by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.

² The author's present address is the University of California, Los Angeles, California 90024.