CHEVALLEY GROUPS OVER COMMUTATIVE RINGS¹

BY MICHAEL R. STEIN²

Communicated by Hyman Bass, August 26, 1970

1. Introduction. Steinberg [8] has given a simple presentation for the universal central extension [7], [8], [9] of the group of rational points of a simply connected Chevalley group over a field. In this note we announce a similar theory for the simply connected Chevalley groups over *commutative rings* and outline the proof of a stability theorem for certain functors resulting from this construction. Complete proofs will appear elsewhere.

Let us introduce some notation. A denotes a commutative ring with 1, A^* is its group of invertible elements, \mathfrak{p} and \mathfrak{q} are ideals of A, and $(1+\mathfrak{q})^* = (1+\mathfrak{q}) \cap A^*$. Φ is a reduced irreducible root system [2] and $G(\Phi, \)$ is the simply connected Chevalley-Demazure group scheme with root system Φ . If Φ is of type C_l , $l \ge 1$ ($C_1 = A_1$), we say Φ is symplectic, and if Φ is of type A_l , B_l , C_l , or D_l , we say Φ is classical. The subgroup of $G(\Phi, A)$ generated by the elementary unipotents $e_{\alpha}(t), \alpha \in \Phi, t \in A$, will be denoted $E(\Phi, A)$. A full discussion of these notions may be found in [3], [5], and [9].

Define the Steinberg group, $St(\Phi, A)$, to be the group with generators $x_{\alpha}(t)$, $\alpha \in \Phi$, $t \in A$, subject to the relations

(1.1)
$$\begin{aligned} x_{\alpha}(s)x_{\alpha}(t) &= x_{\alpha}(s+t) & (\alpha \in \Phi; s, t \in A) \\ [x_{\alpha}(s), x_{\beta}(t)] &= \prod x_{i\alpha+j\beta}(N_{\alpha,\beta,i,j}s^{i}t^{j}) & (\alpha, \beta \in \Phi, \alpha+\beta \neq 0) \end{aligned}$$

where the product is as in [8]. Since the elementary unipotents $e_{\alpha}(t)$ also satisfy these relations, the map $x_{\alpha}(t) \mapsto e_{\alpha}(t)$ extends to a homomorphism $\pi: \operatorname{St}(\Phi, A) \to G(\Phi, A)$ with image $E(\Phi, A)$. Set ker $\pi = L(\Phi, A)$.

In §2 we present certain commutator formulas which yield necessary and sufficient conditions for $E(\Phi, A)$ and $St(\Phi, A)$ to be their own derived groups. In §3 we show that the extension $St(\Phi, A) \rightarrow E(\Phi, A)$

AMS 1970 subject classifications. Primary 18F25, 20G10, 20G35; Secondary 20G25, 20G30.

¹ This paper is a portion of the author's doctoral thesis at Columbia University, written under the direction of Professor Hyman Bass. The research was supported in part by National Science Foundation Grants NSF-GP-8718 and NSF-GP-13711.

² Present address: Northwestern University, Evanston, Illinois 60201.

Copyright @ 1971, American Mathematical Society

Key words and phrases. Chevalley group, universal central extension, stability theorems, Steinberg group, commutators in Chevalley groups, K_2 , second homology group, Bruhat decomposition.