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CHEVALLEY GROUPS OVER COMMUTATIVE RINGS!
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Communicated by Hyman Bass, August 26, 1970

1. Introduction. Steinberg [8] has given a simple presentation for
the universal central extension [7], [8], [9] of the group of rational
points of a simply connected Chevalley group over a field. In this
note we announce a similar theory for the simply connected Chevalley
groups over commutative rings and outline the proof of a stability
theorem for certain functors resulting from this construction. Com-
plete proofs will appear elsewhere.

Let us introduce some notation. 4 denotes a commutative ring with
1, A* is its group of invertible elements, p and q are ideals of 4, and
A+q)*=(14+q)NA4*. ® is a reduced irreducible root system [2] and
G(®, ) is the simply connected Chevalley-Demazure group scheme
with root system ®. If ® is of type Ci, I=1 (Ci=4,), we say P is
symplectic, and if ® is of type 4, Bi, Ci, or Dy, we say ® is classical.
The subgroup of G(®, 4) generated by the elementary unipotents
e.(t), aED, tE A, will be denoted E(®, 4). A full discussion of these
notions may be found in [3], [5], and [9].

Define the Steinberg group, St(®, 4), to be the group with gener-
ators x.(t), a EP, tE A, subject to the relations

Za(8)2.(t) = xa(s + £) (a € d;5,t € A)
[€a(s), 2] = IT iario(Na,p,s,is) (o, 8 € &, @+ B 7 0)

where the product is as in [8]. Since the elementary unipotents
e.(t) also satisfy these relations, the map x.(f)—e.() extends to
a homomorphism w:St(®, 4)—>G(®, 4) with image E(®, A). Set
ker m=L(®, 4).

In §2 we present certain commutator formulas which yield neces-
sary and sufficient conditions for E(®, 4) and St(®, 4) to be their own
derived groups. In §3 we show that the extension St(®, 4)—E(®, 4)
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