ON AN INEQUALITY OF MEAN CURVATURES OF HIGHER DEGREE¹

BY BANG-YEN CHEN

Communicated by S. Sternberg, June 26, 1970

1. Introduction. Let $x: M \rightarrow E^{n+N}$ be an immersion of an *n*-dimensional closed manifold M immersed in a euclidean space E^{n+N} of dimension n+N. Let B_n be the bundle of unit normal vectors of x(M)so that a point of B_v is a pair (p, e), where e is a unit normal vector to x(M) at x(p). Then B_v is a bundle of (N-1)-dimensional spheres over M and is a manifold of dimension n+N-1. Let dV be the volume element of M. There is a differential form $d\sigma$ of degree N-1 on B_{ν} such that its restriction to a fibre is the volume element of the sphere of unit normal vectors at a point $p \in M$; then $d\sigma \wedge dV$ is the volume element of B_v . For each $(p, e) \in B_v$, there corresponds a symmetric linear transformation A(p, e) of the tangent space $T_p(M)$ of M at p, called the second fundamental form at (p, e). The eigenvalues $k_1(p, e), \dots, k_n(p, e)$, of the second fundamental form A(p, e) are called the principal curvatures at (p, e). The *i*th mean curvature $K_i(p, e), i=1, 2, \cdots, n$, are defined by the elementary symmetric functions as follows:

(1)
$$\binom{n}{i}K_i(p,e) = \sum k_1(p,e) \cdots k_i(p,e), \quad i=1,2,\cdots,n,$$

where $\binom{n}{i} = n!/i!(n-i)!$.

We call the integral $K_i^*(p) = \int |K_i(p, e)|^{n/i} d\sigma$ over the sphere of unit normal vectors at x(p), the *i*th total absolute curvature of the immersion x at p, and we define as the *i*th total absolute curvature of M itself the integral $\int_M K_i^*(p) dV$.

In this note, I would like to announce the following results:

THEOREM 1. Let $x: M \to E^{n+N}$ be an immersion of a closed manifold of dimension n into E^{n+N} . Then we have the following inequality:

Copyright (1971, American Mathematical Society

AMS 1969 subject classifications. Primary 5374, 5390; Secondary 5345, 5399.

Key words and phrases. Closed submanifold, normal bundle, second fundamental form, *i*th mean curvature, hypersphere.

¹ This paper was presented to the Midwest Regional Conference in Differential Geometry at East Lansing, June 18, 1970.