DISCOUNTED AND POSITIVE STOCHASTIC GAMES

BY T. PARTHASARATHY

Communicated by M. H. Protter, May 11, 1970

1. Introduction. The main purpose of this note is to announce a few results on stochastic games. A stochastic game is determined by five objects: S, A, B, q and $r . S, A$ and B are nonempty Borel Subsets of Polish spaces and r is a bounded measurable function on $S \times A \times B$. We interpret S as the state space of some system and A, B as the set of actions available to players I and II respectively at each state. When the system is in state s and players I and II choose action a and b respectively, the system moves to a new state according to the distribution $q(\cdot \mid s, a, b)$ and I receives from II, $r(s, a, b)$ units of money. Then the whole process is repeated from the new state s^{\prime}. The problem, then, is to maximize player I's expected income as the game proceeds over the infinite future and to minimize player II's expected loss.

A strategy π for player I is a sequence π_{1}, π_{2}, \cdots, where π_{n} specifies the action to be chosen by player I on the nth day by associating (Borel measurably) with each history

$$
h=\left(s_{1}, a_{1}, b_{1}, \cdots, s_{n-1}, a_{n-1}, b_{n-1}, s_{n}\right)
$$

of the system a probability distribution $\pi_{n}(\cdot \mid h)$ on the Borel sets of A. Call π a stationary strategy if there is a Borel map f from S to P_{A}, where P_{A} is the set of all probability measures on the Borel sets of A, such that $\pi_{n}=f$ for each $n \geqq 1$ and in this case, π is denoted by $f^{(\infty)}$. Strategies and stationary strategies are defined similarly for II.

Let β be any fixed nonnegative number satisfying $0 \leqq \beta<1$. A pair (π, Γ) of strategies for I and II associates with each initial state s, a nth day expected income $r_{n}(\pi, \Gamma)(s)$ for I and a total expected discounted income

$$
I_{\beta}(\pi, \Gamma)(s)=\sum_{n=1}^{\infty} \beta^{n-1} r_{n}(\pi, \Gamma)(s)
$$

Such stochastic games are called discounted stochastic games. Positive stochastic games are those where $r(s, a, b) \geqq 0 \forall s, a, b$ and $\beta=1$.

AMS 1969 subject classifications. Primary 9070; Secondary 9070, 9072.
Key words and phrases. Stochastic games, discounted, positive, optimal stationary strategies.

