EQUIVARIANT DYNAMICAL SYSTEMS

BY MIKE FIELD¹

Communicated by Stephen Smale, May 11, 1970

In this note we consider equivariant vector fields and diffeomorphisms and present results which generalise some well-known theorems of the theory of dynamical systems as developed by Smale and others. The main result is a generalisation of the Kupka-Smale density theorem. Proofs will be given elsewhere; the note is a summary of the author's Ph.D. thesis, done at the University of Warwick.

For a survey of dynamical systems theory, see [1]; for elementary facts about equivariant vector fields, see [2].

M will always denote a compact C^{∞} manifold, without boundary, and G a compact Lie group acting differentiably on M. Let GVB(M)and GFB(M) respectively denote the categories of C^{∞} G-vector bundles and C^{∞} G-fiber bundles over M; we assume paracompact fiber.

Thus $TM \in GVB(M)$ in a natural way. For $E \in GVB(M)$ or GFB(M)we may consider $C'_{G}(E) = \{X \in C^{r}(E) : gXg^{-1}(x) = X(x), g \in G, x \in M\}$: The space of equivariant sections of E. It is well known that for $E \in GVB(M)$, $C'_{G}(E)$ is a Banach splitting subspace of $C^{r}(E)$, with respect to the C^{r} topology on $C^{r}(E)$.

As a straightforward generalisation of the proof given for G = id in [3], we have:

THEOREM 1. If $E \in GFB(M)$, then $C_{\mathcal{G}}^r(E) \subset C^r(E)$, as a closed C^{∞} Banach submanifold, in a natural unique way.

COROLLARY 1.1. $\operatorname{Diff}_{G}^{r}(M) \subset C^{r}(M, M), r \geq 1$, as a C^{∞} submanifold. Here $\operatorname{Diff}_{G}^{r}(M)$ denotes the set of C^{r} equivariant diffeomorphisms of M, with the C^{r} topology.

If $X \in C_{G}^{r}(TM)$ and $X(x) = 0_{x}$, then $X(gx) = 0_{gx}$, $g \in G$, and G(x) is a singular set for X. Similarly for $f \in \text{Diff}_{G}^{r}(M)$, with fx = x.

Let q be a closed orbit of $X \in C_{G}^{r}(TM)$. We define G_{q} , the "isotropy group of q", by:

AMS 1969 subject classifications. Primary 3465; Secondary 5731, 5747.

Key words and phrases. Equivariant vector fields, equivariant diffeomorphisms, compact Lie group action, manifolds of equivariant maps, normal hyperbolicity, genericity, transversality, Kupka-Smale density theorem, Hartman's theorem, Morse-Smale system, Anosov diffeomorphism, structural stability.

¹ Research done whilst the author was receiving an S.R.C. grant.