THE K-SPAN OF A RIEMANN SURFACE

BY MYRON GOLDSTEIN

Communicated by F. W. Gehring, May 11, 1970

In this note, we shall answer a question first posed by Sario and Oikawa in their monograph *Capacity functions* [4], and later by Rodin [3] in his Bulletin paper. The question is this. Does the class KD of harmonic functions u with finite Dirichlet integral and such that *du has vanishing periods along all dividing cycles consist only of constant functions if and only if the K-span (for m = 0) vanishes at some point with respect to some local parameter about it? The K-span (for m=0) is defined to be $\partial v/\partial x |_{z=\zeta}$ where dv reproduces for the space dKD, i.e. $(du, dv) = \pi \partial u/\partial x |_{z=\zeta}$ for all $du \in dKD$, and z denotes a local variable at ζ . Note that the definition of the span depends on ζ and the choice of the local variable at ζ .

We shall answer this question in the negative by exhibiting a Riemann surface which carries nonconstant KD functions but which has the property that the K-span (for m=0) vanishes at each point for some choice of the local variable at that point. Note that our K-span (for m=0) is Rodin's 1-span.

The Riemann surface we shall construct is the same one that appears on p. 377 of my paper *Boundaries of function spaces of Riemann surfaces* [2], but, in order to aid the reader, the details of the construction will be repeated here.

Let R_0 be a hyperbolic Riemann surface which admits no nonconstant harmonic functions with finite Dirichlet integral and has a single ideal boundary component. Let $\{\gamma_n\}$ denote a sequence of analytic Jordan arcs on R_0 such that $\gamma_n \cap \gamma_m = \emptyset$ for $n \neq m$, and such that for an arbitrary compact subset K of R_0 , $\gamma_n \cap K = \emptyset$ for all sufficiently large n. Let $R' = R_0 - \bigcup_{n=1}^{\infty} \gamma_n$ and take the sequence $\{\gamma_n\}$ such that R' does not belong to the class $SO_{HD'}$ i.e. such that there exists a nonnegative Dirichlet function on R_0 which is harmonic on R' and vanishes quasi everywhere on $\bigcup_{n=1}^{\infty} \gamma_n$ but does not vanish quasi everywhere on R_0 . Let R'_1 and R'_2 be two copies of R'. Denote by γ_n^+ (resp. γ_n^-) the positive (resp. negative) edge of γ_n . For each n, identify γ_n^+ of R'_1 with γ_n^- of R'_2 and γ_n^- of R'_1 with γ_n^+ of R'_2 . The resulting Riemann surface R has a single ideal boundary component. Furthermore, $R \in O_{HD}^2 - O_{HD}^1$, i.e. the dimension of the vector

AMS 1970 subject classifications. Primary 3045; Secondary 3111.

Key words and phrases. HD functions, KD functions, level curve, critical point, span, ideal boundary component.