A SHORT PROOF OF A THEOREM OF BARR-BECK

BY Y.-C. WU

Communicated by David A. Buchsbaum, June 9, 1970

Let C be a category. Let (P, \mathfrak{M}) be a projective structure [K-W] where P are the set of \mathfrak{M} -projectives and the set of P-proper morphisms. Then the following are true.

I. (P, \mathfrak{M}) is determined by a cotriple iff there is a coreflexive subcategory $C' \subset C$ with the properties:

(1) $|\mathbf{C}'| \subset P$,

(2) the coreflexions are in \mathfrak{M} .

II. If $S \dashv T$, where $S: C \rightarrow D$ and $T: D \rightarrow C$, and if (P, \mathfrak{M}) is a projective structure in C determined by a cotriple G, then the projective structure $(rSP, T^{-1}\mathfrak{M})$ is determined by the cotriple SGT, where rSP is the collection of retracts of SP. Moreover, if (P, \mathfrak{M}) is induced by a cotriple G, then $(rSP, T^{-1}\mathfrak{M})$ is induced by SGT.

The proofs of these two statements are omitted here. As a corollary of the above statements, we have the following.

III (Barr-Beck). The triple cohomology of groups coincides with the Eilenberg MacLane cohomology.

IV (Barr-Beck). The triple cohomology of associative algebras coincides with the Hochschild cohomology.

For detailed statements of the above, see $[B-B_1]$.

We now prove III. Let (G, π) be the category of groups over the group π . Let M be a π -module. Then there is an adjoint pair

$$(G, \pi) \stackrel{S}{\underset{T}{\rightleftharpoons}} \pi\text{-}\mathrm{Mod}$$

where $S(W) = Z\pi \otimes_{\mathcal{W}} IW$ with $IW = \ker(Z(W) \rightarrow Z)$ and $T(M) = M \times_{\varphi} \pi$, the semidirect product of M and π with respect to the π module structure $\varphi: \pi \rightarrow \operatorname{Aut}(M)$ (cf. $[B-B_2]$, where S(W) is denoted by $\operatorname{Diff}_{\pi}(W)$). Now the free group cotriple on the category Gof groups gives a cotriple on (G, π) . Let (P, \mathfrak{M}) be the corresponding projective structure. Then $(rSP, T^{-1}\mathfrak{M})$ is a projective structure in π -Mod. To show $(rSP, T^{-1}\mathfrak{M})$ is induced by the free functor cotriple on π -Mod, it suffices to show that SP contains all free π -modules. Since P are retracts of free groups and IF are free

AMS 1969 subject classifications. Primary 0830, 1310.

Key words and phrases. Category, functors, cotriples, projective structures, cohomology groups.