THE NONFINITE TYPE OF SOME $Diff_0 M^n$

BY P. L. ANTONELLI, D. BURGHELEA, P. J. KAHN¹

Communicated by Louis Auslander, May 1, 1970

1. Introduction. Throughout this paper, unless explicitly stated otherwise, all manifolds will be closed, connected, oriented, and of class C^{∞} . We denote by X some arbitrary closed subset of the *n*-manifold M^n , $X \neq M^n$. When X is empty, we shall suppress it from the notation. The set of orientation-preserving self-diffeomorphisms of M^n that fix each point of X can be made into a locally-path-connected, metrizable, topological group $\text{Diff}(M^n, X)$ by endowing it with the usual C^{∞} topology and the operation of map-composition [6], [8]. Let $\text{Diff}_0(M^n, X)$ be the identity component of $\text{Diff}(M^n, X)$. For general M^n , the only global homotopy-theoretic fact known about $\text{Diff}_0(M^n, X)$ is that it has the homotopy type of a countable CW complex [8].

Let S^n be the standard, oriented *n*-sphere. In [1], the authors announced that $\text{Diff}_0 S^n$ does not have the homotopy type of a finite CW complex when $n \ge 7$. The techniques described in §3 of this announcement, together with [1], allow us to extend this result to other manifolds.

2. Statement of the main results and remarks. Our main result is the following:

2.1. THEOREM. If M^n is a spin manifold with trivial rational Pontrjagin classes, then $\text{Diff}_0(M^n, X)$ does not have the homotopy type of a finite CW complex when either (a) n=8k-4, $k \ge 6$, or (b) n=8k and k is admissible.

An admissible natural number k is a natural number ≥ 42 for which the open interval $(\frac{1}{3}(2k+1), \frac{1}{2}(2k+1))$ contains at least one prime. It follows from the Prime Number Theorem that there are at most finitely many *in*admissible natural numbers, but the precise value of the largest such number is not known. See Remark 2.5 below.

2.2. REMARK. It is clear that π -manifolds of the appropriate dimensions satisfy the hypotheses of 2.1. Note that this includes homotopy spheres, homotopy tori, real Stiefel manifolds, compact Lie

AMS 1969 subject classifications. Primary 5720, 5755; Secondary 5372.

Key words and phrases. Homotopy type of CW-complex, π -manifold, space of diffeomorphisms of a manifold, flat manifold, manifolds of constant negative curvature, rational Pontrjagin classes, spin structure.

¹ The first two authors were supported in part by National Science Foundation grant GP-7952X1 and the third was supported by a National Science Foundation Postdoctoral Fellowship.