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Consider a configuration in Euclidean 3-space consisting of a sur
face T and of a rectifiable Jordan arc r = { j = j ( r ) ; 0 g r g l } having 
its end points on T, but no other point in common with T. Denote 
by P the semidisc in the (w, ü)-plane P = {w, v; u2+v2 <1 , fl>0}, by 
d'P and d"P its boundary portions {u, v; u2+v2=l, v>0} and 
{u,v; - 1 < « < 1 , » = 0) , respectively, and by Pr the domain PUd'P. 

A surface 5 = {f = f(w, v); (u, v)ÇzP'} is said to be bounded by the 
above configuration, or chain (I\ T), if its position vector f(w, v) 
= {x(uf v), y(u, v), z(u, v)} satisfies the following conditions: 

(0 t(u,v)ec»(P'). 
(ii) i(u, v) maps the arc d'P onto the open arc ( r ) = { ^ = j(r); 

0 < r < 1} monotonically in such a way that 
lim j(cos 0, sin 6) = $(0), Urn j(cos 6, sin 6) = g(l). 

(iii) The relation lim,».^ dT[l(un} vn)] = 0 holds for every sequence 
of points (un, vn) in P' converging to a point on d"P. 

Here dT[lc] = mitsT | f ~ t | denotes the distance between the point 
£ and the surface T. 

Obviously, the convergence specified under (iii) is uniform in the 
following sense: 

lim sup dr[ic(u, v)] = 0 . 
Ô-K) ( « , » ) G P ' ; 0 < ^ « 

Thus while the distance function dr\l{u, v)] is continuous in P, the 
same cannot generally be said about the vector £(w, v). In fact, the 
trace of S on 2", i.e. the set of limit points on T for all sequences 
$(un, vn) as in (iii) above, may well look quite bizarre. Examples 
illustrating such contingencies can be found in [2, pp. 95-96] and 
[4, pp. 220-222]. 
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