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ABSTRACT. The topic is vector-fields and characteristic classes. 
The starting point is the classical Gauss-Bonnet theorem and the 
H. Hopf index theorem. After recalling these, curvature is used to 
define the Chern class of a complex analytic manifold. Then a 
recently proved formula relating Chern classes to zeroes of 
meromorphic vector-fields is given. 

This expository note will briefly outline some recent developments 
involving zeroes of vector fields and characteristic classes. The char­
acteristic classes used will be defined. 

This really begins with the classical Gauss-Bonnet theorem [17], 
so recall this theorem. Let M be a smooth compact oriented surface 
(without boundary) in R*. MC.RZ. Let v be a smooth field of unit 
normal vectors on M. 

Assume that v is compatible with the orientation of Min the sense that 
given pÇzM and given a positively oriented basis ei, e2 for 

TPM (TPM = tangent space of M a t p), 

then v(p) is a positive multiple of £1X02. Let S2 be the unit sphere of 
R\ S2= {(xi, x2, xz)ERd\x2

1+xt+xl = l}. Take S2 with its standard 
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