ON THE FREENESS OF ABELIAN GROUPS: A GENERALIZATION OF PONTRYAGIN'S THEOREM¹

BY PAUL HILL

Communicated by I. N. Herstein, March 9, 1970

Recall that a subgroup H of a torsion-free abelian group G is pure if and only if G/H is again torsion-free. For brevity, call a set S an $f\sigma$ -union of its subsets $S_{\lambda}, \lambda \in \Lambda$, if each finite subset of S is contained in some S_{λ} . In this language, Pontryagin's theorem is (equivalent to) the following, where the set-theoretic, not the group-theoretic, union prevails.

THEOREM (PONTRYAGIN). If the countable, torsion-free abelian group G is the $f\sigma$ -union of pure subgroups that are free, then G must be free.

Pontryagin gave an example that demonstrates that the prefix " $f\sigma$ " cannot be deleted from the above theorem; indeed he showed that there exists a torsion-free group of rank 2 that is not free such that each subgroup of rank 1 is free (see, for example, [1, p. 151]). We present the following direct generalization of Pontryagin's theorem obtained by transposing the countability condition.

THEOREM 1. If the torsion-free abelian group G is the $f\sigma$ -union of a countable number of pure subgroups that are free, then G must be free.

OUTLINE OF PROOF. Let G be an $f\sigma$ -union of pure subgroups H_n , $n < \omega$, that are free. Write $H_n = \sum_{i \in I(n)} \{g_i\}$. For simplicity of notation, let μ denote the smallest ordinal having the cardinality of G. We claim that there exist subgroups A_{α} , $\alpha < \mu$, of G satisfying the following conditions:

(0) $A_0 = 0$.

(1) A_{α} is pure in G for each $\alpha < \mu$.

(2) $\{A_{\alpha}, H_n\}$ is pure in G for each $\alpha < \mu$ and each $n < \omega$.

(3) $A_{\alpha+1} \supseteq A_{\alpha}$ for each α such that $\alpha+1 < \mu$.

(4) $A_{\alpha+1}/A_{\alpha}$ is countable for each α such that $\alpha+1 < \mu$.

(5) $A_{\alpha} \cap H_n = \sum_{i \in I(n,\alpha)} \{g_i\}$ for $\alpha < \mu$ and $n < \omega$, where $I(n, \alpha)$ is a subset of I(n).

AMS 1969 subject classifications. Primary 2030; Secondary 2051.

Key words and phrases. Torsion-free abelian groups, Pontryagin's theorem, direct sum of cyclic groups, pure subgroups.

¹ This research was supported by NSF Grant GP-12318.