BEST UNIFORM APPROXIMATIONS VIA ANNIHILATING MEASURES

BY WILLIAM HINTZMAN

Communicated by R. A. Kunze, March 5, 1970

The problem under consideration in this paper is that of uniformly approximating an arbitrary continuous function g on the closed unit disk \overline{D} by continuous functions f which are analytic in $D = \{z \text{ complex: } |z| < 1\}$. In particular, we are concerned with the existence, uniqueness, and construction of a best approximation f_0 to g. Our results consist of a proof of the uniqueness of f_0 when it exists and an algorithm for constructing f_0 for certain classes of functions g. Both results follow from a more general theorem on best uniform approximations and annihilating measures.

If E is a normed linear space, A is a subspace of E, and S_A^* consists of all the linear functionals L on E with $||L|| \leq 1$ and which vanish on A then, as a consequence of the Hahn-Banach theorem, the following relationship holds [1].

THEOREM 1. If $g \in E$ then $||g||_A = \inf_{f \in A} ||g - f|| = \max_{L \in S_A^*} |L(g)|$.

For E = C(K), the continuous complex valued functions defined on the compact Hausdorff space K, additional information can be obtained from Theorem 1 by applying the Riesz representation theorem [4] to $L \in S_A^*$. Here $||g|| = \max_{z \in K} |g(z)|$ is the uniform norm.

THEOREM 2. If $g \in C(K)$, $f_0 \in A$ is a best uniform approximation to $g, L \in S_A^*$, and $L(g) = ||g||_A$ then $g - f_0 = ||g||_A \overline{\phi}$ a.e. $d\mu$ where $\phi d\mu$ is the polar decomposition of the unique regular Borel measure on K which represents L.

PROOF. By Theorem 1, there is an $L \in S_A^*$ with $L(g) = ||g||_A$ and ||L|| = 1. Let $\phi d\mu$ be the measure which represents L where $|\phi| = 1$ a.e. $d\mu$, $d\mu \ge 0$ and $\int_K d\mu = 1$. Now,

$$\frac{\|g\|_{A}}{\int_{K}} (g - f_{0}) \phi d\mu \leq \int_{K} |(g - f_{0}) \phi| d\mu \leq \int_{K} \|g - f_{0}\| d\mu = \|g\|_{A}.$$

AMS 1969 subject classifications. Primary 4130, 4140; Secondary 4215, 4625.

Key words and phrases. Best approximation, uniform norm, analytic functions, harmonic functions, linear functional, annihilating measure, extreme point.