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The problem under consideration in this paper is that of uniformly 
approximating an arbitrary continuous function g on the closed unit 
disk D by continuous functions ƒ which are analytic in D~ {z com­
plex: |z | < l } . In particular, we are concerned with the existence, 
uniqueness, and construction of a best approximation f0 to g. Our re­
sults consist of a proof of the uniqueness of / 0 when it exists and an 
algorithm for constructing f0 for certain classes of functions g. Both 
results follow from a more general theorem on best uniform approxi­
mations and annihilating measures. 

If E is a normed linear space, A is a subspace of E, and SA consists 
of all the linear functionals L on E with | |L | | ^ 1 and which vanish on 
A then, as a consequence of the Hahn-Banach theorem, the following 
relationship holds [ l ] . 

THEOREM 1. If g&E then 

| | g |U= i n f | | g - / | | = m a x | L ( g ) ( . 

For £ = C(K), the continuous complex valued functions defined on 
the compact Hausdorff space K, additional information can be ob­
tained from Theorem 1 by applying the Riesz representation theorem 
[ 4 ] t o Z , e S l . H e r e I g\\ = max^Gic | g(z) | is the uniform norm. 

THEOREM 2. If gÇzC(K), foÇzA is a best uniform approximation to 
gf L £ S j , and L(g) =||g||A then g—/o = |klU$ #.£. d\x where cj)dfx is the 
polar decomposition of the unique regular Borel measure on K which 
represents L. 

PROOF. By Theorem 1, there is an L(ESA with £(g) = |k lU and 
Hill = 1 . Let (f)dfJL be the measure which represents L where | $ | = 1 
a.e. djut, d/x^O and /xd/x = l . Now, 

IUIU - f (g-M*** £ f I (*-ƒ*)* I «* s f Ik - /oi l* - HU. 
J K J K J K 
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