COMPLETELY REGULAR MAPPINGS AND DIMENSION ${ }^{1}$

BY DAVID C. WILSON

Communicated by Shlomo Sternberg, March 18, 1970

1. Introduction. In an earlier paper [12] the author proved the following theorem: There exists a monotone open map of the universal curve onto any continuous curve such that each point-inverse set is also a universal curve. Since these mappings are open and have homeomorphic point-inverse sets, it is natural to ask whether or not these mappings are completely regular. Theorem 1 of this paper shows that they will be completely regular only if the range is a point. Theorem 1, Theorem 3, and the corollary to Theorem 3 all give conditions on completely regular mappings so that they will not raise dimension. Theorem 4 actually classifies completely regular mappings of a certain type.

The author wishes to express his gratitude to Professors G. Bredon and D. Erle for their assistance and helpful suggestions in the preparation of this paper.

2. The main theorem.

THEOREM 1. Iff is a completely regular mapping of an n-dimensional compactum X onto a compactum Y and $\check{H}^{n}\left(f^{-1}(y)\right) \neq 0$ for all $y \in Y$, then Y is 0-dimensional.

Lemma 1. Let X be an n-dimensional compactum. Let J be a finite polyhedron contained in $E^{2 n+1}$ of dimension less than $n+1$. If f is a mapping of X into $E^{2 n+1}$ and $\eta>0$, then there exists a homeomorphism $h: X \rightarrow E^{2 n+1}$ such that $d(f, h)<\eta$ and $h(X) \cap J=\varnothing$.

Proof of Lemma 1. Approximate f by a mapping g whose range is contained in an n-polyhedron which (by general positioning) misses J. Since the set of homeomorphisms is dense in the function space $\left(E^{2 n+1}\right)^{X}$, we can find a homeomorphism h which approximates g and such that $h(X) \cap J=\varnothing$.

The homology theory in this paper will be singular homology with integer coefficients. If J is a singular n-cycle, then $|J|$ will denote its

[^0]
[^0]: AMS 1969 subject classifications. Primary 5470, 5538; Secondary 5460.
 Key words and phrases. Completely regular mappings, finite dimensional compacta, Alexander duality, Vietoris mapping theorem.
 ${ }^{1}$ This research was supported in part by the National Science Foundation, under NSF grant GP-7952X1.

