CROSS SECTIONALLY CONNECTED 2-SPHERES ARE TAME

BY R. A. JENSEN ${ }^{1}$
Communicated by Steve Armentrout, March 5, 1970

W. T. Eaton [4] and Norman Hosay [5] have independently shown that a 2-sphere S in E^{3} is tame if each horizontal cross section of S is either a simple closed curve or a point. The purpose of this note is to indicate how to extend Hosay's argument to show that S is tame if each horizontal cross section is connected. This answers a question raised by Bing [2].

The author would like to thank L. D. Loveland for helpful suggestions.

The notation used here is as in [5]. Let $E_{t}=\left\{(x, y, z) \in E^{3} \mid z=t\right\}$.
Theorem. Let S be a 2-sphere in E^{3} such that $S \cap E_{t}$ is connected (or void) for each t in E^{1}. Then S is tame.

Let $J_{t}=S \cap E_{t}$. We suppose $\left\{t \mid J_{t} \neq \varnothing\right\}=[0,1]$. The first four parts of Hosay's proof are concerned with showing that S is locally tame modulo $J_{0} \cup J_{1}$ by showing that the complementary domains of S are locally simply connected at each point p of $S-\left(J_{0} \cup J_{1}\right)$. For a round open ball U containing p he picks a certain map h taking a disk D into $U \cap \mathrm{Cl}(\operatorname{Int} S)$ and wishes to construct a map $g: D \rightarrow U-S$ which agrees with h on $\operatorname{Bd} D$.

We first observe that since a separable metric space can contain only countably many mutually disjoint separators which are not irreducible, the set $J_{t}, 0<t<1$, is an irreducible separator of S (and hence of E_{t}) except for at most countably many values of t. Using Cannon's result [3] we know that each set $J_{t}, 0<t<1$, is a taming set. We next observe that if $\left\{J_{i}\right\}$ is a countable collection of taming sets on S the techniques of [1] can be used to construct an ϵ-map of Cl (Int S) into $\mathrm{Cl}(\operatorname{Int} S)-\cup J_{i}$. (Proofs of these observations appear in [6].) Thus we may suppose that $h(D) \cap J_{t}=\varnothing$ unless J_{t} is an irreducible separator of E_{t}. This is the key to extending Hosay's argument.

In part (A) of [5] Hosay uses the fact that if $h\left(A_{i}^{t}\right)$ is a certain continuum in $h(D) \cap E_{t}$ then any two points of $h\left(A_{i}^{t}\right) \cap \operatorname{Int} S$ can be

[^0]
[^0]: A MS 1969 subject classifications. Primary 5705; Secondary 5478.
 Key words and phrases. Tame 2 -spheres, tame surfaces, surfaces in E^{3}.
 ${ }^{1}$ The results presented in this paper are a part of the author's dissertation at the University of Wisconsin, written under the direction of R. H. Bing.

