FOLIATIONS AND NONCOMPACT TRANSFORMATION GROUPS

BY MORRIS W. HIRSCH

Communicated by Stephen Smale, November 20, 1969

Introduction. Let G be a Lie group and M a compact C^{∞} manifold. In [2] Anosov actions of G on M are defined and proved to be structurally stable.

In this announcement we are concerned with the foliation \mathfrak{F} of M defined by the orbits of G. Under the assumption that G is connected, \mathfrak{F} is C^1 stable (3). If G is connected and nilpotent, G has a compact orbit (4). If G is merely solvable, however, there may be no compact orbit. In fact it can happen that no foliation C^0 close to \mathfrak{F} has a compact leaf (8). Upper bounds for the number of compact orbits of given type are found (9). In (7) we discuss the intersection of certain nilpotent subgroups of a Lie group S with conjugates of a uniform discrete subgroup of S.

Hyperbolic automorphisms of foliations. A k-foliation $\mathfrak T$ of M is a function assigning to each $x \in M$ the image $\mathfrak T_x$ of a C^2 injective immersion $V_x \to M$ of a connected k-dimensional manifold V_x . We require that the leaf $\mathfrak T_x$ contain x, and that the function $T\mathfrak T\colon M \to G_k(M)$ assigning to $x \in M$ the tangent plane to V_x at x be C^1 ; here $G_k(M)$ is the manifold of k-planes tangent to M. Equivalently, $T\mathfrak T$ is a completely integrable C^1 field of k-planes, and $\mathfrak T_x$ is the maximal integral submanifold through x. Thus $\{\mathfrak T_x\}_{x\in M}$ is a partition of M. The set $F_k(M)$ of all k-foliations of M inherits the C^0 and C^1 topologies from the set of C^1 maps $M \to G_k(M)$. We also use $T\mathfrak T$ to denote the bundle of k-planes tangent to the leaves.

If \mathfrak{F} , $\mathfrak{G} \subseteq F_k(M)$, a homeomorphism $h : \mathfrak{F} \to \mathfrak{G}$ is a homeomorphism of M taking each leaf of \mathfrak{F} onto a leaf of \mathfrak{G} . We call \mathfrak{F} C^1 stable if it has a C^1 neighborhood $N \subseteq F_k(M)$ of foliations homeomorphic to \mathfrak{F} .

An automorphism g of $\mathfrak F$ is a C^1 diffeomorphism of M which is a homeomorphism $\mathfrak F \to \mathfrak F$. We call g hyperbolic if there exists a splitting $TM = E_+ \oplus E_- \oplus T\mathfrak F$ invariant under Tg, and such that the following condition holds. For some (and hence any) Riemannian metric on M there exist constants $0 < \lambda < 1 < \mu$ and $n \in \mathbb{Z}_+$ such that if $X \in TM$ and $X \neq 0$, then

AMS 1969 subject classifications. Primary 2240, 5736; Secondary 5482, 3465, 3451, 3453.

Key words and phrases. Foliation, transformation group, compact orbit, structural stability.