RESEARCH PROBLEMS

Abstract

The Research Problems department of the Bulletin has been discontinued. This final offering consists of recently rediscovered problems and solutions submitted before the closing of the department.

PROBLEMS.

1. Richard Bellman. Orthogonal series

Let $\left\{u_{n}(x)\right\}$ be an orthonormal sequence over the interval $[a, b]$ with the continuous, positive weight function $p(x)$. Let $f(x)$ be a continuous positive function in $[a, b]$ and let $f(x) \sim \sum_{n=1}^{N} a_{n} u_{n}(x)$. Does there exist a summability matrix $\left(s_{n m}\right)$ such that σ_{N} $=\sum_{n=1}^{N} s_{n N} a_{n} u_{n}(x)$ converges to $f(x)$ as $N \rightarrow \infty$ and $\sigma_{N}(x) \geqq 0$ for $N \geqq 1$, $a \leqq x \leqq b$?

2. Richard Bellman. Differential equations

Let $m_{i}, i=1,2, \cdots, N$ be moments of a distribution, i.e., m_{i} $=\int_{a}^{b} x^{i} d G(x), d G \geqq 0$. Consider the linear system $d x_{i} / d t=\sum_{j=1}^{N} a_{i j} x_{j}$, $x_{i}(0)=m_{i}$. What are necessary and sufficient conditions on the matrix $A=\left(a_{i j}\right)$ so that the $x_{i}(t), i=1,2, \cdots, N$, are moments for $t \geqq 0$?

3. Richard Bellman. Approximation of functions

Let $k(x, y)$ be a continuous function of x and y in the square $0 \leqq x, y \leqq 1$. Determine the minimum of $J(f, g)=\int_{0}^{1} f(x) d x$ $+\int_{0}^{1} g(y) d y, k(x, y) \leqq f(x)+g(y)$. Consider the case where $k(x, y)$ is symmetric in x and y, and we ask that $f=g$.

Generalize both to the multidimensional case where

$$
k\left(x_{1}, x_{2}, \cdots, x_{N}\right) \leqq f\left(x_{1}, x_{2}, \cdots, x_{k}\right)+g\left(x_{k+1}, x_{k+2}, \cdots, x_{N}\right)
$$

and to the case where $J(f, g)$ is a more general functional.
Consider the case where $k\left(x_{1}, x_{2}, x_{3}\right)$ is symmetric in x_{1}, x_{2}, x_{3}, and we ask for the minimum of $\int_{0}^{1} \int f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$ subject to the condition that $k\left(x_{1}, x_{2}, x_{3}\right) \leqq f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+f\left(x_{3}, x_{1}\right)$ and $f\left(x_{1}, x_{2}\right)$ is symmetric in x_{1} and x_{2}.

Is there a systematic procedure for solving problems of this type involving the minimization of $J(g)$ where $f(p) \leqq g(p)$ and g is invariant under a group of operations?

4. George Brauer. The L^{p} conjecture for a finitely additive measure

Let $s=\left\{s_{n}\right\}$ be a sequence and let a point ρ_{0} in I be fixed, where I is the unit interval $[0,1)$ and the symbol X denotes the Stone-Cech

