FREE BOUNDARY PROBLEMS FOR PARABOLIC EQUATIONS

BY AVNER FRIEDMAN

1. One dimensional problems. Denote by $D_{i}(T)(1 \leqq i \leqq k)$ a 2-dimensional domain bounded by two curves $x=s_{i-1}(t), x=s_{i}(t)$ where $0<t<T$, and by the line segments $t=0, b_{i-1}<x<b_{i}$ and $t=T$, $s_{i-1}(T)<x<s_{i}(T)$. Here $s_{i-1}(t)<s_{i}(t), s_{0}(t) \equiv b_{0}, s_{k}(t) \equiv b_{k}$ where b_{0}, b_{k} are constants. Let

$$
L_{m} u \equiv a^{m}(x, t) \frac{\partial^{2} u}{\partial x^{2}}+b^{m}(x, t) \frac{\partial u}{\partial x}+c^{m}(x, t) u-\frac{\partial u}{\partial t} \quad(m=1,2)
$$

be parabolic operators with smooth coefficients and with $c^{m}(x, t) \leqq 0$. Suppose, for definiteness, that k is an even number. Consider the following problem: Find such curves s_{1}, \cdots, s_{k-1} and functions u_{1}, u_{2}, that

$$
\begin{align*}
& L_{1} u_{1}=f_{1} \quad \text { in } D_{1}(T) \cup D_{3}(T) \cup \cdots \cup D_{k-1}(T), \tag{1.1}\\
& L_{2} u_{2}=f_{2} \quad \text { in } D_{2}(T) \cup D_{4}(T) \cup \cdots \cup D_{k}(T), \tag{1.2}\\
& u_{1}(x, 0)=h_{1}(x) \quad \text { if } b_{i-1}<x<b_{i}, \quad i=1,3, \cdots, k-1, \tag{1.3}\\
& u_{2}(x, 0)=h_{2}(x) \quad \text { if } b_{i-1}<x<b_{i}, \quad i=2,4, \cdots, k, \tag{1.4}\\
& \text { either } u_{1}=g_{1} \quad \text { or } \quad \lambda_{1} \frac{\partial u_{1}}{\partial x}+\mu_{1} u_{1}=g_{1} \quad \text { for } x=b_{0}, \quad 0<t<T, \tag{1.5}\\
& \text { either } u_{2}=g_{2} \quad \text { or } \quad \lambda_{2} \frac{\partial u_{2}}{\partial x}+\mu_{2} u_{2}=g_{2} \quad \text { for } x=b_{k}, \quad 0<t<T, \tag{1.6}\\
& u_{1}=u_{2}=\Phi\left(\frac{\partial u_{1}}{\partial x}, \frac{\partial u_{2}}{\partial x}, s_{i}, \frac{d s_{i}}{d t}\right) \quad \text { on } x=s_{i}(t), \tag{1.7}\\
& \qquad 0<t<T \quad(1 \leqq i \leqq k-1), \\
& \Psi\left(u_{1}, u_{2}, \frac{\partial u_{1}}{\partial x}, \frac{\partial u_{2}}{\partial x}, s_{i}, \frac{d s_{i}}{d t}\right)=0 \quad \text { on } x=s_{i}(t), \\
& 0<t<T \quad(1 \leqq i \leqq k-1) ;
\end{align*}
$$

[^0]
[^0]: An address delivered at the Ann Arbor meeting of the American Mathematical Society on November 29, 1969, by invitation of the Committee to Select Hour Speakers for Western Sectional Meetings; received by the editors April 9, 1969.

 AMS 1969 subject classifications. Primary 3562, 3578.
 Key words and phrases. Parabolic equations, free boundary, melting of solids, stability of solutions, asymptotic behaviour, weak solution.

