NONLINEAR EVOLUTION EQUATIONS IN BANACH LATTICES

BY BRUCE CALVERT

Communicated February 27, 1970

1. Nonlinear operators in a Banach lattice. We recall a Banach lattice is a Banach space X over the real numbers R, which is a lattice under the ordering \leq , satisfying for x, y, z in X and $a \geq 0$ in R,

(1) $x \leq y$ implies $x + z \leq y + z$,

(2) $x \leq y$ implies $ax \leq ay$, and

(3) $|x| \le |y|$ implies $||x|| \le ||y||$.

Following [12] we write $x^+ = \sup(x, 0)$ and $x^- = \sup(-x, 0)$, giving $x = x^+ - x^-$ and $|x| = x^+ + x^-$. A positive duality map J is a function from X to the dual X^* with

- (1) $(Jx, x) = ||x||^2$,
- (2) ||Jx|| = ||x||,

(3) $(Jx, y) \ge 0$ if $x \ge 0$ and $y \ge 0$, and

(4) (Jx, y) = 0 if $x \perp y$ (i.e. $\inf(|x|, |y|) = 0$).

This was introduced in [10].

PROPOSITION 1.1. A Banach lattice has a positive duality map.

If g is a convex real valued function on X, then the subgradient $dg: X \rightarrow$ subsets of X* is defined by: w is a dg(x) iff for all u in X, $g(u) \ge g(x) + (w, u - x)$. A selection of a function $F: X \rightarrow$ subsets of Y is a function $f: X \rightarrow Y$ with f(x) in F(x) for x in X.

PROPOSITION 1.2. If X is a Banach lattice with positive duality map J then $y \rightarrow 2J(y^+)$ is a selection of the subgradient of $y \rightarrow ||y^+||^2$.

In the following we study existence of properties of solutions x(t), $t \ge 0$, of the equation of evolution

 $dx/dt(t) = -Ax(t), \quad x(0) = x_0$

for a given element x_0 of $D(A) \subset X$, where $A: D(A) \to X$ is a nonlinear operator (i.e. a function). In §§1 and 2, the theory is similar to [3], [4], [5], [7], [8], but is in the Banach lattice setting of [10], [11]. Important properties of A are as follows. See [1] for the similar concept of a T-monotone operator.

AMS Subject Classifications. Primary 4720, 4750, 4780.

Key Words and Phrases. Banach lattice, nonlinear equations of evolution, duality map, subgradient, monotonic, *T*-accretive, *T*-nonexpansive, semigroup, fixed point, ergodic.