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Introduction, 1. Let C(T) be the Banach space of complex continu­
ous periodic functions on the real line, and Ll{T) the Banach space 
of complex periodic functions on the real line which are absolutely 
integrable on [0, 2w). For simplicity we shall sometimes denote both 
spaces by E(T). Let then En be the space of trigonometric polyno­
mials ^Ct^-n c*eikti a n d l e t Fn:E(T)—>En be the Fourier projection, 
defined by 

(Fnx)(t) = ] £ (x)ke
m, where (x)k = — I x(t)e~mdL 

k=—n 27T •/ —TT 

Then Fn has minimum norm among the projections E(T)—>£n, 
[lO], [l ]. Similar results hold when E(T) is replaced by other Banach 
spaces of functions, [2], [ó]. 

I t has been proved recently that Fn is the unique minimum norm 
projection CR(T)—>Em i.e. that P = Fn if P is a projection CR(T)—>En 

and | |P | | =| |Pn||, [3], [4]. We prove that Fn is the unique minimum 
norm projection L^T)—»E„, and that neither result can be generalized 
very much. 

I t is possible to replace T by any compact abelian group G, the set 
{eikt: — nSkS +n} of characters of T by any finite set {eyly 
CiNQO} of characters of G, and furthermore to consider the map­
ping E(G)-*EN given by x—>x * k, where E(G) = C{G) or L1(G)i 

EN = the linear hull of {ey:y^N}f and k— ^yeN cyey, 0 ^ c 7 £ C . I t 
is this generalization we have studied ([7], [8] and [9]); however, 
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