PRODUCT FORMULAS FOR $L_{n}(\pi)$

BY JULIUS L. SHANESON

Communicated by William Browder, December 12, 1969

Introduction. In this note we prove some product formulas for non-simply-connected even dimensional surgery obstructions. This complements [8] (and in fact uses [8] as well as [5]). We also give a simple example of the type of geometric construction that product formulas make possible.

1. Product formulas. Let Ω_{m} be the oriented cobordism classes of oriented, closed, smooth or piecewise-linear (P.L.) manifolds of dimension m. Let π be a finitely presented group, let $w: \pi \rightarrow Z_{2}$ be a homomorphism, and let $L_{n}^{h}(\pi, w)$ be the Wall surgery obstruction group for the homotopy problem in dimension $n \geqq 5$ (see [6] or [7]). That is, if $\left(X^{n}, \partial X\right)$ is a manifold, if ξ is a vector bundle over X, if $f:(M, \partial M) \rightarrow(X, \partial X)$ is a map of degree one whose restriction induces a homotopy equivalence of boundaries, and if F is a stable framing of $\tau(M) \oplus f^{*} \xi$; then if $\left(\pi_{1} X, w^{1} X\right)=(\pi, w)$, there is an obstruction $\theta(M, f, F)$ in $L_{n}^{n}(\pi, w)$ that vanishes if and only if (M, f, F) is cobordant relative the boundary to (N, g, G), g a homotopy equivalence. The Wall groups satisfy $L_{n}^{h}(\pi, w)=L_{n+4}^{h}(\pi, w)$, and surgery obstructions are invariant under products with complex projective space CP^{2}. For $n \geqq 6$, every element can be realized as $\theta(M, f, F)$ for a suitable given X and ξ; e.g. $X=K \times I$ and $\xi=\nu(X)$, the normal bundle of X. For low dimensions, obstructions are defined by crossing with CP^{2}; their vanishing is a necessary condition for the surgery problem to be solvable.

There is a pairing

$$
\Omega_{m} \times L_{n}^{h}(\pi, w) \rightarrow L_{n+m}^{h}(\pi, w)
$$

defined as follows: Let $\alpha \in \Omega_{m}$ and let $z \in L_{n}^{h}(\pi, w)$. Assume $n \geqq 6$. Choose a simply-connected manifold P representing α, and let X, ξ, M, f, and F be as above so that $\theta(M, f, F)=z$. Let G be the natural framing of $\tau(P) \oplus \nu(P), \nu(P)$ a high dimensional normal bundle of P. Then we make the definition

$$
\alpha \times z=\theta(P \times M, 1 \times f, G \times F)
$$

[^0]
[^0]: AMS Subject Classifications. Primary 5705, 5710; Secondary 5747.
 Key Words and Phrases. Surgery, surgery obstruction, index, Whitehead torsion, nonlinear representation.

