ON GROUP ALGEBRAS

BY MARTHA SMITH

Communicated by I. N. Herstein, March 13, 1970

For any (discrete) group G and any field F, let FG denote the group algebra of G over F. Thus elements of FG are finite formal sums $\sum a(g)g$, where $a(g) \in F$, $g \in G$.

THEOREM 1. Suppose G is any group and F is the field of complex numbers. Let * denote the involution on FG given by

$$\left(\sum a(g)g\right)^* = \sum \overline{a(g)}g^{-1}.$$

Let Z denote the center of FG. Then there exists a function \natural from FG into Z with the following properties:

- (i) $(a+b)^{\natural} = a^{\natural} + b^{\natural}$, (ii) $(za)^{\natural} = za^{\natural}$ for $z \in \mathbb{Z}$,
- (ii) $(2a)^{4} = (2a^{4})^{6} + (2a)^{4}$, (iii) $(ab)^{4} = (ba)^{4}$,
- $(111) (ao) = (oa)^{1},$
- (iv) $z^{\natural} = z$ for $z \in \mathbb{Z}$, (v) $(a^*)^{\natural} = (a^{\natural})^*$.
- $(v) (a^{*}) = (a^{*})^{*},$

(vi) $(aa^*)^{\natural} = 0$ implies a = 0.

In fact, if W(G) is the W^* -algebra generated by the left action of G on $l^2(G)$, then we may embed FG in W(G), and then the above function is just the restriction to FG of the function \natural on W(G) studied by Dixmier [2].

A two-sided ideal of a ring R is said to be an annihilator ideal of R if it is the left annihilator of some subset of R.

LEMMA 2. Let F be a field of characteristic zero and G any group. If I is an annihilator ideal of FG and a, b are elements of I such that $axb -bxa \in I$ for all $x \in FG$, then there exist elements y, z in the center of FG, and not both zero, such that $ya - zb \in I$. If further $a(FG)b \subseteq I$, then y and z may be chosen so that $ya \in I$.

COROLLARY 3. If F is algebraically closed of characteristic zero and FG is an order in a ring Q, then the center of FG is an order in the center of Q.

Given a group G, let Δ denote the subgroup of elements which have only finitely many conjugates in G. Let Δ^+ denote the subgroup of torsion elements of Δ . By a result of Passman [5], FG is semiprime

AMS Subject Classifications. Primary 1880; Secondary 1649, 1620, 1656, 4665.

Key Words and Phrases. Group algebra, annihilator ideal, polynomial identity, classical quotient ring, von Neumann regular ring, W*-algebra, trace.