ON THE SEMISIMPLICITY OF INTEGRAL REPRESENTATION RINGS

BY JANICE ZEMANEK

Communicated by Irving Reiner, November 10, 1969

For a finite group G and a ring R, define the integral representation ring a(RG) as the abelian group generated by the isomorphism classes of RG-lattices, with

$$[M] + [M'] = [M \oplus M'],$$

and

$$[M][M'] = [M \oplus_R M'].$$

The integral representation algebra A(RG) is $C \otimes_{\mathbb{Z}} a(RG)$. When does a(RG) contain nontrivial nilpotent elements?

Let $|G| = p^{\alpha}n$, where $p \nmid n, p$ prime. Denote by Z_p the *p*-adic valuation ring in Q, and by Z_p^* its completion. Reiner has shown

(i) If $\alpha = 1$, then $A(Z_pG)$ and $A(Z_p^*G)$ have no nonzero nilpotent elements (see [1]).

(ii) If $\alpha \ge 2$, and G has an element of order p^2 , then both $A(Z_pG)$ and $A(Z_pG)$ contain nonzero nilpotent elements (see [2]).

We have been able to settle the open case as to what happens when G has a (p, p)-subgroup. Our main result is

THEOREM 1. Whenever $\alpha > 1$, both $A(Z_pG)$ and $A(Z_p^*G)$ contain nonzero nilpotent elements.

As a matter of fact, the construction used shows

THEOREM 2. If |G| is not squarefree, then a(ZG) and a(Z'G) contain nonzero nilpotent elements, where

$$Z' = \{a/b: a, b \in Z, b \text{ coprime to } |G|\}.$$

In the other direction, Reiner proved

(iii) If |G| is squarefree, then a(Z'G) has no nonzero nilpotent elements (see [1]).

AMS Subject Classifications. Primary 1640; Secondary 1644.

Key Words and Phrases. Integral representation rings, nilpotent elements.