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1. When describing the interior structure of an area minimizing m 
dimensional locally rectifiable current T in jRm+1, one calls a point 
#£sp t r ^ s p t dT regular or singular according to whether or not x 
has a neighborhood V such that VT\spt T is a smooth m dimensional 
submanifold of 2?m+1. As a result of the efforts of many geometers it is 
known that there exist no singular points in case m ^ 6 ; a detailed 
exposition of this theory may be found in [3, Chapter 5]. Recently it 
was proved in [2] that 

„ « , „ s , « s ^ r * , 2 , * i 2 2 . 2 . * . h\ Z = d(E l_R i\ \x:xi + %2 + %z + #4 < #5 + H + #7 + Xa)) 

is a 7 dimensional area minimizing current in R8 with the singular 
point 0. This implies that, for m>7, E"»~7XZ is an m dimensional 
area minimizing current in Rm~7XR8^Rm+1 with the m — 7 dimen
sional singular set Rm~7X {o}. Here we will show (Theorem 1) that 
the Hausdorff dimension of the singular set of an m dimensional area 
minimizing rectifiable current in Rm+1 never exceeds tn — 7. 

Our method also yields the result (Theorem 2) that the Hausdorff 
dimension of the singular set of an m dimensional area minimizing 
flat chain modulo 2 in R™** never exceeds rn~-2, for arbitrary co-
dimension p. 

2. We use the terminology of [3]. Given any positive integer m we 
choose Ï according to [3, 5.4.7] with n~in+l and let 

<*{T) - {*.-e"d|2l|, *) è T} for T E (CiR**1). 

Whenever 0 ̂ kkÇîR and A CRm+1 we define <t>**(A) as the infimum of 
the set of numbers ]C*€G a(£)2~*(diam B)k corresponding to all 
countable open coverings G of A. We see from [3, 2.10.2] that 
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