DIMENSION AND MULTIPLICITY FOR GRADED ALGEBRAS ${ }^{1}$

BY WILLIAM SMOKE

Communicated by David A. Buchsbaum, December 24, 1969
We want to reconsider a problem that goes back to Hilbert [3]. Let $R=\sum R^{p}$ be a commutative algebra which is graded by the nonnegative integers and finitely generated over $R^{0}=F$, which for simplicity is a field. Let $M=\sum M^{p}$ be a finitely generated graded R module, with p again restricted to the nonnegative integers. Each component M^{p} is a finite-dimensional vector space over F. If R is generated over F by elements homogeneous of degree one then Hilbert proved that there is a polynomial

$$
H_{M}(p)=e(M) p^{n-1} /(n-1)!+\cdots
$$

such that $H_{M}(p)=\operatorname{dim} M^{p}$ for p large. With the understanding that the zero polynomial is of degree -1 , we may call n the dimension of M. The coefficient $e(M)$ is a nonnegative integer, the multiplicity of M.

Unfortunately, if R is not generated by elements of degree one, it is not usually true that $\operatorname{dim} M^{p}$ is eventually given by a polynomial in p. (For example, let $M=R=F[x]$ where x is an indeterminant of degree two.) The more general case, where the generators of R are of degree greater than one, arises naturally. We need a substitute for the Hilbert polynomial and it turns out that the Poincaré series

$$
P(M)=\sum\left(\operatorname{dim} M^{p}\right) t^{p}
$$

of the module is a good substitute. In the classical situation the relation between H_{M} and $P(M)$ is such that H_{M} is of degree at most $n-1$ if and only if $(1-t)^{n} P(M)$ is a polynomial in t. Moreover, if H_{M} is of degree exactly $n-1$ then $e(M)$ is the value of $(1-t)^{n} P(M)$ for $t=1$. We intend to show how these facts generalize. The details of the proofs will be given elsewhere.

In [4] Serre gave a homological treatment of dimension and multiplicity for local rings. Following Serre, we wish to define the multi-

AMS Subject Classifications. Primary 1390; Secondary 1393.
Key Words and Phrases. Dimension, multiplicity, graded algebra, Hilbert polynomial, Poincaré series, Grothendieck group, Euler characteristic, minimal resolution, global dimension, polynomial algebra, Koszul complex.
${ }^{1}$ This research was supported by the National Science Foundation Grant GP. 12635.

