DIMENSION AND MULTIPLICITY FOR GRADED ALGEBRAS¹

BY WILLIAM SMOKE

Communicated by David A. Buchsbaum, December 24, 1969

We want to reconsider a problem that goes back to Hilbert [3]. Let $R = \sum R^p$ be a commutative algebra which is graded by the nonnegative integers and finitely generated over $R^0 = F$, which for simplicity is a field. Let $M = \sum M^p$ be a finitely generated graded Rmodule, with p again restricted to the nonnegative integers. Each component M^p is a finite-dimensional vector space over F. If R is generated over F by elements homogeneous of degree one then Hilbert proved that there is a polynomial

$$H_M(p) = e(M)p^{n-1}/(n-1)! + \cdots$$

such that $H_M(p) = \dim M^p$ for p large. With the understanding that the zero polynomial is of degree -1, we may call n the *dimension* of M. The coefficient e(M) is a nonnegative integer, the *multiplicity* of M.

Unfortunately, if R is not generated by elements of degree one, it is not usually true that dim M^p is eventually given by a polynomial in p. (For example, let M=R=F[x] where x is an indeterminant of degree two.) The more general case, where the generators of R are of degree greater than one, arises naturally. We need a substitute for the Hilbert polynomial and it turns out that the Poincaré series

$$P(M) = \sum (\dim M^p) t^p$$

of the module is a good substitute. In the classical situation the relation between H_M and P(M) is such that H_M is of degree at most n-1if and only if $(1-t)^n P(M)$ is a polynomial in t. Moreover, if H_M is of degree exactly n-1 then e(M) is the value of $(1-t)^n P(M)$ for t=1. We intend to show how these facts generalize. The details of the proofs will be given elsewhere.

In [4] Serre gave a homological treatment of dimension and multiplicity for local rings. Following Serre, we wish to define the multi-

AMS Subject Classifications. Primary 1390; Secondary 1393.

Key Words and Phrases. Dimension, multiplicity, graded algebra, Hilbert polynomial, Poincaré series, Grothendieck group, Euler characteristic, minimal resolution, global dimension, polynomial algebra, Koszul complex.

 $^{^1}$ This research was supported by the National Science Foundation Grant GP. 12635.