GENERALIZED THOM SPECTRA AND TRANSVERSALITY FOR SPHERICAL FIBRATIONS¹

BY NORMAN LEVITT

Communicated by W. Browder, February 27, 1970

1. A Poincaré duality space (abbreviated P.D. space) of dimension $n \ge 0$ is a finite complex M with the following property.

Let M be embedded in S^{n+k} , k large, and let R be a regular neighborhood; then the inclusion $\partial R \subseteq R$, when converted to a fibration, has fiber a (k-1)-sphere.

Similarly a Poincaré cobordism $(W; M_0, M_1)$ of dimension n+1 is a triad with the following property.

Let W; M_0 , M_1 be embedded in $S^{n+k} \times \{I; \{0\}, \{1\}\}$ with relative regular neighborhood R (i.e. $R \cap S^{n+k} \times \{i\} = Q_i$ is a regular neighborhood of M_i in $S^{n+k} \times \{i\}, i = 0, 1$). Let $\overline{\partial}R = \text{closure } \partial R - S^{n+k} \times \{0, 1\}$. Then $\overline{\partial}R \subseteq R$ is a (k-1)-spherical fibration and $\overline{\partial}R \cap Q_i = \partial Q_i \subseteq Q_i$ is the induced (k-1)-spherical fibration.

A P.D. pair M, ∂M is a P.D. cobordism M; ∂M , \emptyset . If W; M_0 , M_1 is a P.D. cobordism then M_0 , M_1 are P.D. spaces of one lower dimension. For a P.D. space M let $\nu_k(M)$ be the fibration corresponding to $\partial R \subseteq R$; for a P.D. cobordism W; M_0 , M_1 let $\nu_k(W$; M_0 , M_1) be the fibration corresponding to $\overline{\partial} R \subseteq R$.

A Generalized Thom Spectrum is a spectrum defined as follows: let $\xi_k: E_k \to B_k$ be a sequence of (k-1)-spherical fibrations, $k \ge 1$. Let $\psi_k: B_k \to B_{k+1}$ be maps covered by spherical-fibration maps $\phi_k: \xi_k \oplus \epsilon \to \xi_{k+1}$.

Let the Thom complex $T(\xi^{*i})$ be the space $\mathfrak{M}_{\xi_k} \cup cE_k$, i.e. the mapping cylinder of $\xi_k: E_k \to B_k$ union the cone on E_k with the top of the mapping cylinder identified with the base of the cone. There are natural maps $\sum T(\xi_k) \to T(\xi_{k+1})$. This forms the generalized Thom spectrum T.

Let S be the spectrum got by taking $B_k = B_{k+1} \cdots = \text{point}$; thus S is the sphere spectrum. If T is any spectrum as above, we assume that there are base points in each B_k , preserved by ψ . This gives an inclusion of spectra $S \subseteq T$.

A T-P.D. space (or simply T-space) is a P.D. space M together with maps of spherical fibrations $f_k: \nu_k(M) \rightarrow \xi_k$ so that

AMS Subject Classifications. Primary 5568, 5710; Secondary 5550, 5730.

Key Words and Phrases. Thom complexes of spherical fibrations, Poincaré duality spaces, obstructions to transversality, Poincaré duality cobordism, surgery, Arf invariant, index, Top/PL, Pontrjagin-Thom construction.

¹ Partially supported by a Ford Foundation Grant.