ON STRUCTURAL STABILITY¹

BY J. W. ROBBIN

Communicated by Stephen Smale, January 26, 1970

The purpose of this note is to sketch a proof of

THEOREM A. A C^2 diffeomorphism (on a compact, boundaryless manifold) which satisfies Axiom A and the strong transversality condition is structurally stable.

This is (one direction of) a conjecture of Smale [3]. The case where the nonwandering set is finite is the main theorem of [4]. For background, see [2] and [3]. Details will be given in a subsequent publication.

1. An infinitesimal condition. Throughout, M denotes a smooth, compact, boundaryless manifold and $f: M \to M$ a diffeomorphism. A *chart* on M is a pair (α, U) where U is an open subset of M and α maps a neighborhood of \overline{U} diffeomorphically onto an open subset of Euclidean space \mathbb{R}^m .

Let $\mathfrak{X}^{0}(M)$ denote the Banachable space of all continuous vector fields on M. Let $f^{\sharp}: \mathfrak{X}^{0}(M) \to \mathfrak{X}^{0}(M)$ be the continuous linear operator defined by $f^{\sharp}\eta = Tf^{-1} \circ \eta \circ f$ for $\eta \in \mathfrak{X}^{0}(M)$.

Fix a Riemannian metric on M and let d denote the corresponding metric on M; i.e., for $x, y \in M$, d(x, y) is the infimum of the lengths of all curves from x to y. We define a new metric d_f by

$$d_f(x, y) = \sup_n d(f^n(x), f^n(y))$$

where the supremum is over all integers *n*. Let $\mathfrak{X}_f(M)$ denote the set of all $\eta \in \mathfrak{X}^0(M)$ with the property that for every chart (α, U) on M there exists K > 0 such that

$$|\eta_{\alpha}(x) - \eta_{\alpha}(y)| \leq Kd_f(x, y)$$

for all $x, y \in U$. Here $\eta_{\alpha}: U \to \mathbb{R}^m$ is defined by $T\alpha \circ \eta(x) = (\alpha(x), \eta_{\alpha}(x))$ for $x \in U$. By standard techniques $\mathfrak{X}_f(M)$ can be made into a Banachable space. The inclusion $\mathfrak{X}_f(M) \to \mathfrak{X}^0(M)$ is continuous and for any finite cover of M by charts (α, U) the K's above can be chosen small if η is sufficiently close to 0 in $\mathfrak{X}_f(M)$.

AMS Subject Classifications. Primary 3465, 5720; Secondary 3451, 5750.

Key Words and Phrases. Structurally stable, Axiom A, strong transversality condition, Anosov diffeomorphism, locally Anosov diffeomorphism, unrevisited, spectral decomposition.

¹ This work was partially supported by NSF Grant GP-11495.