ON STRUCTURAL STABILITY ${ }^{1}$

BY J. W. ROBBIN
Communicated by Stephen Smale, January 26, 1970

The purpose of this note is to sketch a proof of
Theorem A. A C^{2} diffeomorphism (on a compact, boundaryless manifold) which satisfies Axiom A and the strong transversality condition is structurally stable.

This is (one direction of) a conjecture of Smale [3]. The case where the nonwandering set is finite is the main theorem of [4]. For background, see [2] and [3]. Details will be given in a subsequent publication.

1. An infinitesimal condition. Throughout, M denotes a smooth, compact, boundaryless manifold and $f: M \rightarrow M$ a diffeomorphism. A chart on M is a pair (α, U) where U is an open subset of M and α maps a neighborhood of \bar{U} diffeomorphically onto an open subset of Euclidean space R^{m}.

Let $\mathscr{X}^{0}(M)$ denote the Banachable space of all continuous vector fields on M. Let $f^{\#}: \mathscr{X}^{0}(M) \rightarrow \mathscr{X}^{0}(M)$ be the continuous linear operator defined by $f^{\#} \eta=T f^{-1} \circ \eta \circ f$ for $\eta \in X^{0}(M)$.

Fix a Riemannian metric on M and let d denote the corresponding metric on M; i.e., for $x, y \in M, d(x, y)$ is the infimum of the lengths of all curves from x to y. We define a new metric d_{f} by

$$
d_{f}(x, y)=\sup _{n} d\left(f^{n}(x), f^{n}(y)\right)
$$

where the supremum is over all integers n. Let $x_{f}(M)$ denote the set of all $\eta \in \mathscr{C}^{0}(M)$ with the property that for every chart (α, U) on M there exists $K>0$ such that

$$
\left|\eta_{\alpha}(x)-\eta_{\alpha}(y)\right| \leqq K d_{f}(x, y)
$$

for all $x, y \in U$. Here $\eta_{\alpha}: U \rightarrow R^{m}$ is defined by $T \alpha \circ \eta(x)=\left(\alpha(x), \eta_{\alpha}(x)\right)$ for $x \in U$. By standard techniques $X_{f}(M)$ can be made into a Banachable space. The inclusion $X_{f}(M) \rightarrow X^{0}(M)$ is continuous and for any finite cover of M by charts (α, U) the K 's above can be chosen small if η is sufficiently close to 0 in $X_{j}(M)$.

[^0]
[^0]: AMS Subject Classifications. Primary 3465, 5720; Secondary 3451, 5750.
 Key Words and Phrases. Structurally stable, Axiom A, strong transversality condition, Anosov diffeomorphism, locally Anosov diffeomorphism, unrevisited, spectral decomposition.
 ${ }^{1}$ This work was partially supported by NSF Grant GP-11495.

