AN INVARIANCE PRINCIPLE FOR THE EMPIRICAL PROCESS WITH RANDOM SAMPLE SIZE

BY M. CSÖRGÖ¹ AND S. CSÖRGÖ

Communicated by David Blackwell, January 19, 1970

Let C = C[0, 1] be the space of continuous functions on [0, 1] with the uniform topology, that is the distance between two points x and y (two functions x and y of $t \in [0, 1]$) is defined by

$$\rho(x, y) = \sup_{t} |x(t) - y(t)|.$$

Let \mathfrak{B} be the σ -field of Borel sets of C.

Let $(\Omega, \ \Omega, \ P)$ be some probability space and W be the Wiener measure on $(C, \ \Omega)$ with the corresponding Wiener process $\{W_t(\omega): 0 \le t \le 1\}, \ \omega \in \Omega$; that is W_t has values in C and is specified by $E(W_t) = 0$ and $E(W_sW_t) = s$ if $s \le t$. Let W^0 be the Gaussian measure on $(C, \ \Omega)$ constructed by setting $W_t^0 = W_t - tW_1$. Then $W_t^0 \in C$, $E(W_t^0) = 0$ and $E(W_s^0W_t^0) = s(1-t)$ if $s \le t$. Also $W_0^0 = W_1^0 = 0$ with probability 1 and $\{W_t^0: 0 \le t \le 1\}$ is called the tied down Wiener process or the Brownian bridge.

Let $S_n = \xi_1 + \cdots + \xi_n$, $S_0 = 0$, $n = 1, 2, \cdots$ be the partial sum sequence of random variables $\{\xi_n\}$ defined on (Ω, α, P) . Define a random element X_n of C by

(1)
$$X_n(t, \omega) = W_n(t, \omega) + (nt - [nt])\xi_{[nt]+1}(\omega)/n^{1/2} - tW_n(1, \omega)$$

where $W_n(t, \omega) = S_{[nt]}(\omega)/n^{1/2}$. The following theorem is an immediate consequence of L. Breiman's analysis of §§13.5 and 13.6 in his book [3].

THEOREM B. Suppose the random variables ξ_1, ξ_2, \cdots are independent and identically distributed with mean zero and variance 1. Then the random functions X_n defined by (1) satisfy

(2)
$$X_n \xrightarrow{\mathfrak{D}} W^0.$$

Here (2), and also similar relations later on, are interpreted in accordance with (4.5) and (4.7) of Billingsley's book [2], depending on

AMS Subject Classifications. Primary 6030, 6040; Secondary 6270, 6271.

Key Words and Phrases. Invariance principle, weak convergence, randomly selected partial sums, empirical process, random-sample-size Kolmogorov-Smirnov statistics.

 $^{^{1}}$ Work done while the author was a Canada Council Fellow in 1969–1970 at the University of Vienna.