TRIANGULATED INFINITE-DIMENSIONAL MANIFOLDS

BY DAVID W. HENDERSON¹ AND JAMES E. WEST²

Communicated by Richard Palais, November 14, 1969

In this paper we extend almost all the results on infinite-dimensional Fréchet manifolds to apply to manifolds modeled on some l_2^{\prime} (= {x \in l_2} at most finitely many of the coordinates of x are nonzero}) and we show (Theorem 14) that each l_2 -manifold has a unique completion to an l_2 -manifold. (We use l_2 to stand for the Hilbert space of all square-summable sequences of some infinite cardinality A. When we wish to be more specific, we write $l_2(\mathfrak{A})$.) Examples of $l_2^{\ell}(\aleph_0)$ -manifolds include the metric S^{∞} (the unit sphere in $l_2^{\ell}(\aleph_0)$) and the metric RP^{∞} , which may be regarded as the orbit space of S^{∞} acted upon by the antipodal map. (The identity map from S^{∞} or RP^{∞} with the weak topology to the metric topology is a homotopy equivalence. (see [2]).) See also Theorem 16. In fact, we show (Theorems 15 and 17) that each l'_2 -manifold is a metric (see [2] for definition) simplicial complex and that each $l_2^{f}(\aleph_0)$ -manifold is the 'metric' direct limit of finite-dimensional, closed, orientable manifolds. We conjecture that the metric geometric realization of each connected singular s.s. complex (or Kan s.s. complex) is an $l_2^{f}(\mathfrak{A})$ -manifold, for some cardinal \mathfrak{A} . Most of the results here have been independently proved for the case of $l_2'(\aleph_0)$ by T. A. Chapman [1] who used different methods. All manifolds in this paper are assumed paracompact.

DEFINITIONS. (1) If F is a TVS, define F^{ω} to be the countably infinite product and $F_f^{\omega} = \{ \{x_i\} \in F^{\omega} | \text{ for at most finitely many } i, x_i \neq 0 \}.$

(2) Let X and Y be spaces, \mathfrak{U} be an open cover of Y, and \mathfrak{F} a set of functions from X into Y. Then \mathfrak{F} is said to be \mathfrak{U} -small if for each $x \in X$ there is a $U \in \mathfrak{U}$ containing $\{f(x) | f \in \mathfrak{F}\}$. Members of \mathfrak{F} are said to be \mathfrak{U} -approximate. A homotopy $F: X \times I \to Y$ is said to be \mathfrak{U} -small if $\mathfrak{F} = \{F(, t) | t \in I\}$ is. A function $g: X \to Y$ is said to be approximated

AMS Subject Classifications. Primary 5755; Secondary 5525.

Key Words and Phrases. Metric simplicial complex, triangulated infinite-dimensional manifold, contractible homeomorphism space, trivial micro-bundle, stable infinite-dimensional manifold, open embedding, embedding-approximated map, topological classification, homotopy type, negligible Z-set, metric direct limit.

¹ Alfred P. Sloan fellow.

² Partially supported by NSF Grant GP 9397.