ON THE COMPLEX BORDISM AND COBORDISM OF INFINITE COMPLEXES

BY PETER S. LANDWEBER ${ }^{1}$
Communicated by Raoul Bott, November 20, 1969

Let $M U_{*}()$ and $M U^{*}()$ denote the reduced homology (complex bordism) and cohomology (complex cobordism) functors represented by the unitary Thom spectrum $M U$. Two examples of the immense richness of these functors are provided by the development (for suitable complexes or spectra) of the Adams spectral sequence

$$
\begin{equation*}
\operatorname{Ext}_{M U *(M U)}^{*, *}\left(M U^{*}(X), M U^{*}(Y)\right) \Rightarrow\{Y, X\}_{*} \tag{1}
\end{equation*}
$$

by S. P. Novikov [12], and the universal coefficient theorem

$$
\begin{equation*}
\operatorname{Tor}_{*, *}^{M U *\left(S^{0}\right)}\left(M U_{*}(X), \boldsymbol{Z}\right) \Rightarrow H_{*}(X ; \boldsymbol{Z}) \tag{2}
\end{equation*}
$$

by P. E. Conner and L. Smith [9]. Recently N. A. Baas [4] has written an excellent account of the Adams spectral sequence (1), and J. F. Adams has made a thorough analysis of universal coefficient theorems such as (2) in Lecture 1 of [1].

In §1 we announce several solutions to the problem-when is $M U^{*}(X)$ isomorphic to the inverse limit of the complex cobordism of the skeleta (assumed finite) of X ? In the remaining sections we illustrate several universal coefficient theorems, among them (2), by announcing the results of several computations for EilenbergMacLane spectra $K(\pi)$ and the spectrum $b u$ which represents connective K-theory. Full details will appear elsewhere.

1. Let X denote a based CW-complex or highly connected CWspectrum as defined by J. M. Boardman [5]. We shall assume that each skeleton X^{μ} of X is a finite complex, and define a filtration of $M U^{t}(X)$ by the subgroups $M U_{\mu}^{t}(X)=\operatorname{Ker}\left\{M U^{t}(X) \rightarrow M U^{t}\left(X^{\mu-1}\right)\right\}$. In [4] Baas emphasizes the importance, for the construction of the Adams spectral sequence (1), of dealing with spectra for which the filtration topology on the cobordism groups $M U^{t}(X)$ is complete and Hausdorff. In [6] and [7] V. M. Buhštaber and A. S. Miščenko

AMS Subject Classifications. Primary 5530; Secondary 5710.
Key Words and Phrases. Complex bordism, complex cobordism, universal coefficient theorems, Eilenberg-MacLane spectra.
${ }^{1}$ Research supported in part by NSF grant GP-7993.

