EXPRESSION FOR A FUNCTION IN TERMS OF ITS SPHERICAL MEANS

BY H. RHEE

Communicated by Avner Friedman, December 1, 1969
Let $f(X)$ be a continuous function in R^{n}. The spherical means, SM, of f is defined as follows:

$$
\mathrm{SM}[f ; X, \rho]=\omega_{n}^{-1} \int_{\alpha} f\left(X+\rho_{\alpha}\right) d \omega_{\alpha}
$$

where $X=\left(x, x_{2}, x_{3}, \cdots, x_{n}\right)$ is the center of the sphere of radius ρ. α denotes a unit vector. When $\rho=x$, we write $\operatorname{SM}[f ; X, x]=\operatorname{SM}^{*} f$. The main purpose of this paper is to derive an expression for a function $f(X), X \in R_{+}^{n}$ (the open half-space with $x>0$), in terms of SM $*_{f}$. For $(X, t) \in Q_{+}\left(|t|<x,-\infty<x^{\prime}<\infty, x^{\prime}=\left(x_{2}, x_{3}, \cdots, x_{n}\right),\left(x, x^{\prime}\right)\right.$ $\in R_{+}^{n}, n$ odd $\geqq 3$) we define the paraboloidal means, PM , of f as follows:

$$
\operatorname{PM}[f ; X, t]=\omega_{n-1}^{-1}(x+t)^{2-n} \int_{b}^{\infty} d y \int_{\alpha} f\left(y, x^{\prime}+R \alpha\right) R^{n-3} d \omega_{\alpha}
$$

where $b=(x-t) / 2, Y=\left(y, y^{\prime}\right), R=[(x+t)(2 y-x+t)]^{1 / 2}$.
A function $f(X)$ is said to belong to the class C_{ϵ} in R_{+}^{n}, if f is continuous in R_{+}^{n} and $f(X)=O\left(|X|^{(1-n-2 \epsilon) / 2}\right), 0<\epsilon<1$, for large $|X|$. We observe that $\mathrm{PM}[f ; X, t]$ exists, if $f \in C_{\epsilon}$. It is easily verified that if $f \in C_{\epsilon}$, then $\mathrm{SM}^{*} f \in C_{\epsilon}$. The well-known identity on iterated spherical means by John and Asgeiersson [3] states

$$
\begin{equation*}
\int_{\xi} d \omega_{\xi} \int_{\eta} F(r \xi+s \eta) d \omega_{\eta}=2 \omega_{n-1} \int_{|r-s|}^{r+s} J \tau d \tau \int_{\zeta} F(\tau \zeta) d \omega_{\xi} \tag{1}
\end{equation*}
$$

where $J=\left[\left((r+s)^{2}-\tau^{2}\right)\left(\tau^{2}-(r-s)^{2}\right)\right]^{(n-3) / 2}(2 r s)^{2-n}$.
Theorem. Let $f \in C_{\epsilon}$ in R_{+}^{n} (n odd $\geqq 3$), and let $W(X, t)$ $=(x+t)^{n-2} \mathrm{PM}\left[\mathrm{SM}^{*} f ; X, t\right]$. Then the following identity holds for $(X, t) \in Q_{+}$,
(2) $t \mathrm{SM}[f ; X, t]=M_{1} D D_{0}^{n-3} W(X, t)+M_{2} \sum_{i=1}^{(n-3) / 2} a_{i} D_{1}^{i} t^{i+1} \operatorname{SM}[f ; X, t]$,

[^0]
[^0]: AMS Subject Classifications. Primary 3506; Secondary 3579.
 Key Words and Phrases. Spherical means, paraboloidal means, John-Asgeiersson identity, iterated spherical means, characteristics, Darboux equation.

