GROWTH RATE OF GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS

BY STEVEN OREY

Communicated by David Blackwell, November 3, 1969

1. Statement of results. Let $(Y, t, t \ge 0)$ be a real, separable Gaussian process with stationary increments, mean 0, and $Y_0=0$. Let 2Q(t) be the variance of Y_t and define

$$X_t = Y_t / (2Q(t))^{1/2}$$

THEOREM 1. Suppose there exists a nonnegative function v(t) such that

(*)
$$\lim_{t\to\infty} \frac{Q(s+t)-Q(s)}{v(s+t)-v(s)} = 1 \quad uniformly \text{ in } s$$

and there exist positive constants s_0 , β_1 , β_3 with $1 \leq \beta_3 \leq (\beta_1/2+1)$ such that

(i) is monotone nondecreasing, (ii) $v(\lambda s) \ge \lambda^{\beta_1} v(s) > 0$, $s \ge s_0$, $\lambda \ge 1$, (iii) $v(\lambda s) \le \lambda^{\beta_3} v(s)$, $s \ge s_0$, $\lambda \ge 1$

and suppose that there exists $\beta_2 > 0$ such that

(iv) $Q(t) = O(t^{\beta_2}), \quad t \downarrow 0.$

Then

$$\limsup_{t\to\infty} (X_t - (2\log\log t)^{1/2}) = 0 \quad a.s.$$

In fact somewhat more is true.

THEOREM 2. Under the assumptions of Theorem 1,

$$\lim_{T\to\infty} \left(\sup_{t\leq T} X_t - (2\log\log T)^{1/2}\right) = 0 \quad a.s.$$

An important class of examples is obtained by taking $Y_t = \int_0^t Y'_s ds$ where (Y'_s) is a real stationary Gaussian process with mean 0 and continuous sample functions. If q(|t-s|) is the covariance of the (Y_t) -process and $R(t) = \int_0^t (q(s)ds)$ then $Q(t) = \int_0^t R(s)ds$. If v(t) is a differentiable function satisfying conditions (i), (ii) and (iii) of The-

AMS Subject Classifications. Primary 6030, 6069.

Key Words and Phrases. Gaussian processes, stationary increments, law of the iterated logarithm, limiting distribution of the maximum.