AXIOM A+NO CYCLES $\Rightarrow \zeta_f(t)$ RATIONAL

BY JOHN GUCKENHEIMER

Communicated by Richard Palais, December 1, 1969

Throughout, $f: M \rightarrow M$ is a smooth diffeomorphism of a compact C^{∞} manifold without boundary.

Let N_i denote the number of fixed points of f^i . Then

DEFINITION. $\zeta_f(t) = \exp \sum_{i=1}^{\infty} N_i t^i / i$ (as a formal power series in *t*). This definition, due to Artin-Mazur [1], is inspired by Weil's zeta function for a variety defined over a finite field [6]. For the connection of Weil's zeta function with the Riemann zeta function, see [3].

Recall the following definitions from Differentiable dynamical systems [4].

DEFINITION. $x \in M$ is nonwandering if for every neighborhood U of x, there is an n > 0 such that $f^n(U) \cap U \neq \emptyset$. $\Omega(f) = \Omega$ is the set of nonwandering points of f. Ω is closed.

DEFINITION. f satisfies Axiom A if $T_{\Omega}(M)$ has a continuous splitting $T_{\Omega}(M) = E^{\bullet} + E^{\mu}$, invariant under Tf, such that there exist positive constants c, λ , $\lambda < 1$ satisfying the inequalities

$$\begin{aligned} \|Tf^n\nu\| &\leq c\lambda^n \|\nu\| & \text{if } n > 0 \quad \text{and} \quad \nu \in E^*, \\ \|Tf^n\nu\| &\geq c\lambda^{-n} \|\nu\| & \text{if } n > 0 \quad \text{and} \quad \nu \in E^u. \end{aligned}$$

Furthermore, it is assumed that the periodic points of f are dense in Ω .

If f satisfies Axiom A, then $\Omega = \Omega_1 \cup \cdots \cup \Omega_k$ where Ω_i is invariant under f and $f | \Omega_i$ is topologically transitive. Define the relation \geq by $\Omega_i \geq \Omega_j$ if $W^u(\Omega_i) \cap W^s(\Omega_j) \neq \emptyset$. Here $W^u(\Omega_i)$ is the set of points tending toward Ω_i under negative iteration; $W^s(\Omega;)$ is the set of points tending toward Ω_j under iteration.

DEFINITION. If f satisfies Axiom A and the relation \geq defined above is a partial ordering, then f is said to have the No Cycle Property.

The purpose of this paper is to prove the following:

THEOREM. If f satisfies Axiom A and the No Cycle Property, then $\zeta_f(t)$ is rational.

The basic idea of the proof is due to Williams [7]. As a preliminary,

AMS Subject Classifications. Primary 3465, 5536, 5750.

Key Words and Phrases. Dynamical systems, periodic points, zeta functions for diffeomorphisms.