THE CORONA CONJECTURE FOR A CLASS OF INFINITELY CONNECTED DOMAINS

BY M. BEHRENS¹

Communicated by Frederick Gehring, June 30, 1969

1. Statement of results. Let D be a domain obtained from the open unit disk Δ by deleting a sequence of disjoint closed disks Δ_n converging to 0. We assume that the centers c_n and radii r_n of the Δ_n satisfy the following two conditions:

(i)
$$\frac{|c_{n+1}|}{|c_n|} \leq a < 1$$
 for all $n \geq 1$, and

(ii)
$$\sum_{n=1}^{\infty} \frac{r_n}{|c_n|} < \infty.$$

Let $H^{\infty}(D)$ be the uniform algebra of bounded analytic functions on D and let $\mathfrak{M}(H^{\infty}(D))$ be the maximal ideal space of $H^{\infty}(D)$. The Gleason parts of $H^{\infty}(D)$ are the equivalence classes in $\mathfrak{M}(H^{\infty}(D))$ defined by the relation $\|\phi - \psi\| < 2$, where $\|\cdot\|$ is the norm in the dual of $H^{\infty}(D)$.

With the above assumptions on D we have the following results.

THEOREM 1. D is dense in the maximal ideal space of $H^{\infty}(D)$.

THEOREM 2. The Gleason parts of $H^{\infty}(D)$ are all one-point parts or analytic disks, with the exception of the part containing D.

The set of homomorphisms ϕ of $H^{\infty}(D)$ for which $\phi(z) = 0$, where z is the coordinate function on D, is called the "fiber over 0," and is designated by \mathfrak{M}_0 . \mathfrak{M}_0 contains the "distinguished homomorphism" ϕ_0 defined by

$$\phi_0(f) = \frac{1}{2\pi i} \int_{bD} \frac{f(z)dz}{z} \cdot$$

If z tends to zero in such a way that

$$\lim_{N\to\infty}\left(\lim_{z\to0}\inf_{n\geq N}\frac{|z-c_n|}{r_n}\right)=\infty$$

then f(z) tends to $\phi_0(f)$ for all $f \in H^{\infty}(D)$, that is, z tends to ϕ_0 in $\mathfrak{M}(H^{\infty}(D))$. ϕ_0 is in the same Gleason part as D (cf. [5]).

¹ The preparation of this paper was supported in part by NSF Grant No. GP-7710.