NONEXPANSIVE RETRACTS OF BANACH SPACES

BY RONALD E. BRUCK, JR.¹

Communicated by Felix Browder, September 30, 1969

In what follows, C is a closed convex subset of the real, reflexive, strictly convex Banach space X. If $F \subset C$, we shall call F a nonexpansive retract of C if either $F = \emptyset$ or there is a retraction of C onto F which is a nonexpansive mapping.

THEOREM 1. If $T: C \rightarrow C$ is nonexpansive, then F(T), the fixed point set of T, is a nonexpansive retract of C.

THEOREM 2. The class of nonexpansive retracts of C is closed under arbitrary intersections.

To prove these theorems, suppose F is a nonempty subset of C, and set $\mathfrak{F} = \{f: C \rightarrow C | f \text{ is nonexpansive and } F \subset F(f) \}$. Define an order on \mathfrak{F} by setting f < g if $||fx - fy|| \leq ||gx - gy||$ for all $(x, y) \in C \times C$, with strict inequality holding for at least one pair (x, y); then set $f \leq g$ to mean f < g or f = g. Then \leq is a partial ordering of \mathfrak{F} .

Every linearly ordered subset of \mathfrak{F} has a lower bound in \mathfrak{F} ; the proof of this fact utilizes the local weak compactness of C and the weak lower semicontinuity of the norm. Therefore, by Zorn's lemma, \mathfrak{F} has a minimal element.

The strict convexity of X implies that for each $g \in \mathfrak{F}$ there exists a $g_0 \in \mathfrak{F}$ with $F(g_0) = F(g)$ and such that whenever $||g_0(u) - g_0(w)|| = ||u - w||$, then $g_0(u) - g_0(w) = u - w$. For example, we may take $g_0 = \frac{1}{2}I + \frac{1}{2}g$, where I is the identity function for C.

Suppose f is a minimal function in \mathfrak{F} , and g is any function of \mathfrak{F} . Let g_0 be the function of the preceding paragraph; then $g_0 f \in \mathfrak{F}$ while $g_0 f \leq f$. By the minimality of f, therefore $g_0 f = f$.

Letting R(f) denote the range of f, therefore

(1)
$$F(f) \subset R(f) \subset F(g_0) = F(g),$$

and in particular,

(2)
$$F(f) \subset F(g)$$
 for $g \in \mathfrak{F}$.

Key Words and Phrases. Duality mapping, fixed point set, nonexpansive mapping, nonexpansive retract, ray retraction.

AMS Subject Classifications. Primary 4610, 4780; Secondary 4160, 4785, 5230.

¹ Part of this research was conducted while the author held a National Science Foundation Graduate Fellowship at the University of Chicago under the supervision of Professor Felix Browder.