DIFFEOMORPHISMS FOR HILBERT MANIFOLDS AND HANDLE DECOMPOSITION

BY DAN BURGHELEA ${ }^{1}$

Communicated by Richard Palais, June 6, 1969

1. We announce here the following result:

Two homotopic diffeomorphisms of a paracompact separable hilbert manifold of infinite dimension are isotopic.
(1) In this paper, a hilbert manifold (h-manifold) with or without boundary is always hausdorff, paracompact, separable C^{∞}-differentiable and with the infinite dimensional separable hilbert space H as local model.

Let $M(M, \partial M)$ be an h-manifold (with boundary), $X(X, \partial X)$, an h-manifold or finite dimensional manifold (with boundary).
(a) A closed imbedding $\phi: X \rightarrow M(\phi:(X, \partial X) \rightarrow(M, \partial M))$ is a C^{∞}-injective map $\phi: X \rightarrow M$, such that the differential $d_{*} \phi(x)$ is injective for any x, and $\phi(M)$ is closed (for the case with boundary we ask more, $\phi^{-1}(\partial M)=\partial M$ and ϕ is transversal to ∂M in $\left.\partial M\right)$.
(b) A closed tubular neighborhood of a closed imbedding of infinite codimension, $\phi: X \rightarrow M,(\phi:(X, \partial X) \rightarrow(M, \partial M))$, is a closed imbedding $\tilde{\phi}: X \times D^{\infty} \rightarrow M\left(\tilde{\phi}:(X, \partial X) \times D^{\infty} \rightarrow(M, \partial M)\right)$ which extends
 $\left.\boldsymbol{\phi}^{-1}(\partial M)=\partial X \times H\right)$.

Remarks. (1) Any closed imbedding of infinite codimension has closed tubular neighborhoods [3].
(2) For $\tilde{\phi}_{1}$ and $\tilde{\phi}_{2}$ two closed tubular neighborhoods of a closed imbedding $\phi: X \rightarrow M(\phi:(X, \partial X) \rightarrow(M, \partial M))$, there exists an isotopy $h_{t}: M \rightarrow M, \quad\left(h_{t}:(M, \partial M) \rightarrow(M, \partial M)\right), 0 \leqq t \leqq 1$, such that $h_{0}=$ id, $h_{t} \cdot \phi=\phi$ and $h_{1} \cdot \tilde{\phi}_{1}=\tilde{\phi}_{2}$ [2, Theorem 4.1]. By an isotopy as in [2], we mean a level preserving C^{∞}-diffeomorphism $h: M \times I \rightarrow M \times I$, $(h:(M, \partial M) \times I \rightarrow(M, \partial M) \times I)$, i.e., $h(x, t)=\left(h_{t}(x), t\right)$.
(c) Let $M(M, \partial M)$ be an h-manifold (with boundary); A closed imbedded submanifold with boundary $(A, \partial A)$, such that $A \subset$ Int M and $A \backslash \partial A$ is open submanifold of M, is called a zero-codimensional closed submanifold ($0-c$-submanifold).

The $0-c$-submanifold $(B, \partial B)$ is called a collar neighborhood of the 0 - c-submanifold ($A, \partial A$), if $A \subset \operatorname{Int} B$ and ($B \backslash$ Int $A, \partial(B \backslash$ Int $A)$) is diffeomorphic to $(\partial A \times[0,1], \partial A \times \partial[0,1])$.

[^0]
[^0]: ${ }^{1}$ The author was partially supported by the National Science Foundation.

