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The purpose of this note is to indicate how certain asymptotic 
methods developed for ordinary differential equations can be ex
tended and applied to initial-boundary value problems for nonlinear 
parabolic and hyperbolic equations. This is done by considering the 
initial-boundary value problem as a Cauchy problem for an ordinary 
differential equation in an abstract space. 

We consider the initial value problem 

(1) e(dv/dt) - A(t, e)v = ƒ(*, v, e), 0 ^ t S T, v(0) = S(€) 

where v is an element of a Banach space E and c > 0 is a small param
eter. The (possibly unbounded) linear operators A are assumed to 
have a common domain of definition £> independent of (£, e), and the 
function ƒ is assumed to have continuous derivatives with respect to 
tf e and continuous Fréchet derivatives with respect to v. Finally, 
$(€)££> has continuous derivatives with respect to e. 

We will outline here a method for finding an expansion for the 
solution of (1) which is valid as e—>0. 

1. Formal method. We begin by formally describing the procedure. 
These steps will be justified by Theorems 1-3. Suppose 

(I) the operator A(t, e) has a bounded inverse for each (t, e) and 
A(t, e ) ^ " 1 ^ , 0) has continuous derivatives with respect to (t, e). 

Assuming for the moment that (1) has a solution for e>0 , we 
differentiate (1) successively with respect to € and set € = 0 in the 
results. This gives the system of equations 

(2a) - A(t,0)vo=f(t,v0,0) 

(2b) - [A(t, 0) +fr(t, Vo(t), 0)]vr = Rr(t), f = 1, 2, • • • , 

for the coefficients vr of the Taylor expansion of v about € = 0. Next, 
we make the change of variables t = er in (1): 

(3) dV/dr - A(er, e)V = ƒ(«-, V, e), 7(0) = S(€). 

By differentiating this successively with respect to e and setting e = 0 
in the results, we get 
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