ONE DIMENSIONAL WITT'S THEOREM OVER MODULAR LATTICES¹

BY JOHN S. HSIA

Communicated by H. Bass, April 1, 1969

We first present the problem in a general setting. Let R be a commutative ring with unity. A quadratic R-space, in the sense of Bass [1], is a pair (P, q), where P is a finitely generated projective R-module and $q: P \rightarrow R$ is a nonsingular quadratic form. An element $x \in P$ is unimodular if its coefficient ideal $o_P(x) = \{f(x) | f \in \text{Hom}_R(P, R)\}$ = R. The orthogonal group O(P) on (P, q) is the set of all R-automorphisms of P preserving the quadratic structure. The one-dimensional Witt's Theorem is concerned with finding the necessary and sufficient conditions under which O(P) acts transitively on the unimodular elements of (P, q).

A. Roy [6] showed that with finiteness assumption on R and if 2 is unitary in R and, if further, the hyperbolic dimension on P is large enough, then O(P) acts transitively on the nonsingular elements of P of a given norm. (A nonsingular element $x \in (P, q)$ is one which has norm q(x) equaling to a unit.) In this paper, we do not assume the element 2 is a unit. However, we strongly restrict the nature of the ring R. Our ring R always denotes the ring of integers in a local field R, we shall mean here that R is either

- (i) a finite extension of the p-adic number field Q_p , for any prime p, or in the characteristic two situation,
- (ii) the field of formal power series in one uniformizing variable π over a finite field of constants having characteristic 2.

For such a ring R, a quadratic R-space is a free R-module by Naka-yama, and we shall call the pair (P, q) then a (uni-) modular quadratic R-lattice. Given an unimodular (or maximal) element $z \in P$, the characteristic set \mathfrak{M}_z of z in P is defined as

$$\mathfrak{M}_z = \big\{ x \in P \, \big| \, B_q(z, x) = 1 \big\},\,$$

where

$$q(x + y) - q(x) - q(y) = 2B_q(x, y) \qquad \text{Char}(R) \neq 2,$$

= $B_q(x, y)$ \quad \text{Char}(R) = 2.

¹ This work has been supported in part by the National Science Foundation under contract GP8911.