GLOBAL THEOREMS FOR CLOSED PLANE CURVES

BY BENJAMIN HALPERN ${ }^{1}$

Communicated by O. Zariski, May 21, 1969
Let X be a closed plane curve given by a four times continuously differentiable map $X: C \rightarrow R^{2}$ from the circle C into Euclidean twodimensional space R^{2}. The results announced here are typified by

Theorem 1. Under certain regularity conditions, the number of straight lines which are tangent to X at two points s and t of X and such that the unit normals to X at s and t are equal is equal to the number of straight lines which are tangent to X at two points s and t of X and such that the unit normals to X at s and t are unequal, plus the number of selfintersections of X, plus one-half the number of inflection points of X. In Figure 1 the double tangents of the first mentioned kind are drawn solid and the others are dashed.

[^0]
[^0]: ${ }^{1}$ This research was supported in part by the National Science Foundation, Grant No. GP8397.

