UNITARY INVARIANTS FOR COMPACT OPERATORS

BY WILLIAM B. ARVESON¹

Communicated by M. H. Protter, August 5, 1969

We describe in this note how the "boundary representation" technique introduced in [1] leads to a complete classification of compact operators on Hilbert spaces to unitary equivalence (Theorem 3), in terms of a sequence of invariants related to (and generalizing) the numerical range. These invariants are, we feel, vastly simpler than one might have anticipated in so general a situation. Full details will appear in a forthcoming sequel to [1].

1. Boundary representations for spaces of compact operators. Let $LC(\mathfrak{H})$ (resp. $L(\mathfrak{H})$) denote the C^* -algebra of all compact (resp. bounded) operators on a Hilbert space \mathfrak{H} , which may be finitedimensional. The following theorem implies, in the terminology of [1], that the identity representation of $LC(\mathfrak{H})$ is a boundary representation for every irreducible linear subspace of $LC(\mathfrak{H})$ (we call a set of operators irreducible if it commutes with no nontrivial selfadjoint projections).

THEOREM 1. Let S be an irreducible subset of $LC(\mathfrak{H})$, and let ϕ be a completely positive linear map of $LC(\mathfrak{H})$ into $L(\mathfrak{H})$ such that $\|\phi\| \leq 1$ and $\phi(T) = T$ for every T in S. Then ϕ is the identity map.

This result is surprising inasmuch as S can be a very small subset of $LC(\mathfrak{H})$ a priori. For example, S may consist of a single irreducible compact operator. We shall not give the proof of Theorem 1 here, except to say that it is an application of the following.

LEMMA. Let S and ϕ satisfy the hypothesis of Theorem 1. Then there is a faithful, completely positive, idempotent linear map $\psi: L(\mathfrak{H}) \rightarrow L(\mathfrak{H})$ such that $||\psi|| \leq 1$, and whose compact fixed points coincide with the fixed points of ϕ .

2. The matrix range of an operator. Let T be a Hilbert space operator, and let $C^*(T)$ denote the C^* -algebra generated by T and the identity. It is well known that, as ϕ runs over the state space of $C^*(T)$, the complex numbers $\phi(T)$ fill out the closure of the numerical

AMS Subject Classifications. Primary 4665, 4710; Secondary 4745.

Keys Words and Phrases. Operators on Hilbert space, subspaces of C^* -algebras, spaces of compact operators, boundary representations, matrix-valued numerical range, unitary equivalence.

¹ Research supported, in part, by NSF grant GP-5585.