ON AXIOMS FOR B*-ALGEBRAS

BY BERTRAM YOOD¹

Communicated August 28, 1969

Let B be a complex Banach algebra with an involution $x \rightarrow x^*$. Let H denote the set of selfadjoint (s.a.) elements of B and W the subset of H consisting of all $h \in H$ whose spectrum is entirely real. As in [3] we denote the spectral radius of $x \in B$ by $\nu(x)$. We prove the following result.

THEOREM. Suppose that there exists c > 0 where $v(h) \ge c ||h||$ for all $h \in H$. Then W is closed in B.

This theorem has consequences for the theory of B^* -algebras. Shirali and Ford [4] have recently shown that B is symmetric if W=H. Combining this and Lemma 2.6 of [6] with our theorem, we obtain the following result.

COROLLARY 1. B is a B*-algebra in an equivalent norm if and only if W is dense in H and, for some c > 0, $\nu(h) \ge c ||h||$ for all $h \in H$.

As usual $x \in B$ is said to be normal if $xx^* = x^*x$. Let N denote the set of normal elements of B. Berkson [1] and Glickfeld [2] have shown (in case B has an identity) that B is a B^* -algebra in the given norm if $||x^*x|| = ||x^*|| ||x||$ for all $x \in N$. We obtain an analogous result for equivalence to a B^* -algebra.

COROLLARY 2. B is a B*-algebra in an equivalent norm if and only if, for some c > 0, the set of $x \in N$ for which $||x^*x|| \ge c||x^*||||x||$ is dense in N and contains H.

We turn to the proof of our theorem. Let B_1 be the algebra obtained by adjoining an identity 1 to B and defining, as usual, $||\lambda+x||$ $= |\lambda| + ||x||$ and $(\lambda+x)^* = \bar{\lambda} + x^*$ where λ is complex and $x \in B$. We show that there exists b > 0 such that $\nu(y) \ge b ||y||$ for all y s.a. in B_1 . For suppose otherwise. Then there exists a sequence $\{\lambda_n + h_n\}$, with λ_n real and $h_n \in H$, such that $|\lambda_n| + ||h_n|| = 1$ and $\nu(\lambda_n + h_n) \rightarrow 0$. By

AMS Subject Classifications. Primary 4660, 4665; Secondary 4730.

Key Words and Phrases. Banach algebras with involution, B^* - algebras, C^* -algebras, spectral theory.

¹ Research supported by N.S.F. Grant GP-8382.