MATCHING THEOREMS FOR COMBINATORIAL GEOMETRIES

BY MARTIN AIGNER ${ }^{1}$ AND THOMAS A. DOWLING ${ }^{2}$

Communicated by Gian-Carlo Rota, July 18, 1969

1. Introduction. Let $G(S)$ and $G(T)$ be combinatorial geometries of finite rank on sets S and T, respectively, and let $R \subseteq S \times T$ be a binary relation between the points of $G(S)$ and $G(T)$. By a matching from $G(S)$ into $G(T)$, we understand a one-one function f from an independent set $A \subseteq S$ onto an independent set $B \subseteq T$ with ($a, f(a)$) $\in R$ for all $a \in A$. In this note, we present a characterization of matchings of maximum cardinality, a max-min theorem, and a number of related results. In the case when $G(S)$ and $G(T)$ are both free geometries, Theorems 1 and 2 reduce to "the Hungarian method" as introduced by Egerváry and Kuhn [1], and to the König-Egerváry theorem, respectively. Corollary 2 for the case when $G(S)$ is a free geometry and $G(T)$ arbitrary was first discovered by Rado [6] (see also Crapo-Rota [2]). When both $G(S)$ and $G(T)$ are free geometries, Corollary 2 reduces to the well-known SDR theorem.
2. Terminology. For an arbitrary geometry $G(S)$, the closure operator will be denoted by J and the rank function by $r .(G(S), G(T), R)$ shall denote the system of the two geometries together with R, and $R\left(S^{\prime}\right)=\left\{y \mid\right.$ there is some $x \in S^{\prime}$ with $\left.(x, y) \in R\right\}$ for $S^{\prime} \subseteq S$. Let (A, B, f) denote a matching from A onto $B . M=\{(a, f(a)), a \in A\}$ is called the edge set of the matching (A, B, f), and we adopt the convention $M=(A, B, f)$. The common cardinality of A, B, M is called the size $\nu(M)$ of the matching. A support of $(G(S), G(T), R)$ is a pair (C, D) of closed sets, where $C \subseteq S, D \subseteq T$, such that $(c, d) \in R$ implies at least one of $c \in C, d \in D$ holds. The order λ of a support (C, D) is defined as $\lambda(C, D)=r(C)+r(D)$. Finally, an augmenting chain with
[^0]
[^0]: AMS Subject Classifications. Primary 0504, 0535, 0540; Secondary 0460, 0630.
 Key Words and Phrases. Combinatorial geometry, matroid, binary relation between geometries, matching, Hungarian method, augmenting chain, König-Egerváry theorem, marriage theorem, transversal pregeometry.
 ${ }^{1}$ Research supported by the United States Air Force Grant AFOSR-68-1406.
 ${ }^{2}$ Research supported in part by National Science Foundation Grant No. GU-2059.

