MATCHING THEOREMS FOR COMBINATORIAL GEOMETRIES

BY MARTIN AIGNER¹ AND THOMAS A. DOWLING²

Communicated by Gian-Carlo Rota, July 18, 1969

1. Introduction. Let G(S) and G(T) be combinatorial geometries of finite rank on sets S and T, respectively, and let $R \subseteq S \times T$ be a binary relation between the points of G(S) and G(T). By a matching from G(S) into G(T), we understand a one-one function f from an independent set $A \subseteq S$ onto an independent set $B \subseteq T$ with (a, f(a)) $\in R$ for all $a \in A$. In this note, we present a characterization of matchings of maximum cardinality, a max-min theorem, and a number of related results. In the case when G(S) and G(T) are both free geometries, Theorems 1 and 2 reduce to "the Hungarian method" as introduced by Egerváry and Kuhn [1], and to the König-Egerváry theorem, respectively. Corollary 2 for the case when G(S) is a free geometry and G(T) arbitrary was first discovered by Rado [6] (see also Crapo-Rota [2]). When both G(S) and G(T) are free geometries, Corollary 2 reduces to the well-known SDR theorem.

2. Terminology. For an arbitrary geometry G(S), the closure operator will be denoted by J and the rank function by r. (G(S), G(T), R)shall denote the system of the two geometries together with R, and $R(S') = \{y \mid \text{ there is some } x \in S' \text{ with } (x, y) \in R\}$ for $S' \subseteq S$. Let (A, B, f) denote a matching from A onto B. $M = \{(a, f(a)), a \in A\}$ is called the *edge set* of the matching (A, B, f), and we adopt the convention M = (A, B, f). The common cardinality of A, B, M is called the *size* $\nu(M)$ of the matching. A *support* of (G(S), G(T), R) is a pair (C, D) of closed sets, where $C \subseteq S$, $D \subseteq T$, such that $(c, d) \in R$ implies at least one of $c \in C$, $d \in D$ holds. The order λ of a support (C, D) is defined as $\lambda(C, D) = r(C) + r(D)$. Finally, an *augmenting* chain with

AMS Subject Classifications. Primary 0504, 0535, 0540; Secondary 0460, 0630.

Key Words and Phrases. Combinatorial geometry, matroid, binary relation between geometries, matching, Hungarian method, augmenting chain, König-Egerváry theorem, marriage theorem, transversal pregeometry.

¹ Research supported by the United States Air Force Grant AFOSR-68-1406.

² Research supported in part by National Science Foundation Grant No. GU-2059.