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1. Introduction. Given a function/: X-+X, any question which 
inquires into the existence, nature and number of points xÇzX such 
that ƒ(#)=# is called fixed point theory. The assumptions on ƒ and 
X range from practically none (e.g., X is a set, ƒ a function) to quite 
stringent assumptions on ƒ and -X" (e.g., X is a Riemannian manifold 
and ƒ is an isometry). Our attention will be focused on results which 
require X to be a fairly reasonable space (e.g., a finite polyhedron) 
and ƒ a map ( = continuous function). Furthermore, we will limit our 
discussion to results which are not included in the expository tract 
[49] by Van der Walt (1967), which adequately covers the history 
of the subject from its beginning around 1910 to the early sixties. 

2. The Lefschetz theorem and local index theory. One of the most 
useful tools in fixed point theory is the Lefschetz Fixed Point Theo
rem [34], [35], [25]. In its most elementary form it is simply this. 
Let X denote a finite polyhedron and ƒ : X—*X a map. Then, using the 
field of rationals Q as coefficients, ƒ induces homomorphisms. 

(1) fa:Hk(X;Q)->Hk(X;Q). 

The number (it turns out to be an integer) 

(2) L(f) = E (-1)* Trace/*, 
k 

is called the Lefschetz number of ƒ. Then a sufficient condition for ƒ 
to have at least one fixed point is that L(f)-^0. In short, 

(3) L(f) T* 0 =»ƒ(*) = x for some x G X. 
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